МЛР
Материал из MachineLearning.
Строка 18: | Строка 18: | ||
В таком случае функционал качества записывается в более удобной форме:<br /> | В таком случае функционал качества записывается в более удобной форме:<br /> | ||
:<tex>Q(\alpha^*) = \parallel F(F^TF)^{-1}F^Ty - y \parallel ^2 = \parallel P_{_F}y - y \parallel^2</tex>, где <tex>P_F</tex> — проекционная матрица:<br /> | :<tex>Q(\alpha^*) = \parallel F(F^TF)^{-1}F^Ty - y \parallel ^2 = \parallel P_{_F}y - y \parallel^2</tex>, где <tex>P_F</tex> — проекционная матрица:<br /> | ||
- | <tex>P_{_F} y</tex> — вектор, являющийся проекцией <tex>y</tex> на <tex>\mathfrak{L}(f_1,\ \dots,\ f_n)</tex>. | + | <tex>P_{_F} y</tex> — вектор, являющийся проекцией <tex>y</tex> на <tex>\mathfrak{L}(f_1,\ \dots,\ f_n)</tex>.<br /> |
+ | {{бледно|<small>как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!</small>}} |
Версия 22:39, 4 января 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Многомерная линейная регрессия
Имеется множество объектов и множество ответов
. Также имеется набор
вещественнозначных признаков
. Введём матричные обозначения: матрицу информации
, целевой вектор
и вектор параметров
:
Алгоритм:
.
Оценим качество его работы на выборке методом наименьших квадратов:
, или, в матричных обозначениях,
.
Найдём минимум по α:
.
Если , то можно обращать матрицу
, где введено обозначение
.
В таком случае функционал качества записывается в более удобной форме:
, где
— проекционная матрица:
— вектор, являющийся проекцией
на
.
как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!