Участник:Anton/Песочница
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
'''Критерии однородности''' - это критерии проверки гипотез о том, что две (или более) выборки взяты из одного распределения вероятностей. | '''Критерии однородности''' - это критерии проверки гипотез о том, что две (или более) выборки взяты из одного распределения вероятностей. | ||
Рассмотрим такую классификацию критериев: | Рассмотрим такую классификацию критериев: | ||
- | # '''Непараметрические (свободные от распределения) критерии однородности''' не предполагают присутствие какой-либо фундаментальной информации о законе распределения. Любое распределение можно описать ''параметром положения'', характеризующим центр группирования случайных величин, и ''параметром масштаба'', характеризующим степень рассеяния случайных величин относительно центра группирования. Когда закон распределения неизвестен, гипотезы о параметрах проверяются при помощи ''специальных критериев сдвига и масштаба''. Также существуют ''двухвыборочные критерии согласия'' | + | # '''Непараметрические (свободные от распределения) критерии однородности''' не предполагают присутствие какой-либо фундаментальной информации о законе распределения. Любое распределение можно описать ''параметром положения'', характеризующим центр группирования случайных величин, и ''параметром масштаба'', характеризующим степень рассеяния случайных величин относительно центра группирования. Когда закон распределения неизвестен, гипотезы о параметрах проверяются при помощи ''специальных критериев сдвига и масштаба''. Также существуют ''двухвыборочные критерии согласия''. |
## Непараметрические критерии сдвига. | ## Непараметрические критерии сдвига. | ||
## Непараметрические критерии масштаба. | ## Непараметрические критерии масштаба. | ||
## Двухвыборочные критерии согласия. | ## Двухвыборочные критерии согласия. | ||
# Если же принимаются какие-либо дополнительные предположения о законе распределения вероятностей, то можно применять | # Если же принимаются какие-либо дополнительные предположения о законе распределения вероятностей, то можно применять | ||
- | '''параметрические критерии'''. | + | '''параметрические критерии однородности'''. |
= Непараметрические критерии однородности = | = Непараметрические критерии однородности = | ||
== Непараметрические критерии сдвига == | == Непараметрические критерии сдвига == | ||
+ | Проверяется [[Гипотеза сдвига|гипотеза сдвига]], согласно которой распределения двух выборок имеют одинаковую форму и отличаются только сдвигом на константу. | ||
+ | Пусть заданы две выборки | ||
+ | <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>,взятые из неизвестных непрерывных распределений <tex>F(x)</tex> и <tex>G(y)</tex> соответственно. | ||
+ | |||
+ | '''Нулевая гипотеза''' — <tex>H_0: \quad F(x) = G(y - \mu)</tex> | ||
+ | |||
+ | Наиболее частая ''альтернативная гипотеза''' - <tex>H_1: \quad F(x) \ne G(y - \mu)</tex>. | ||
+ | |||
+ | Существует большое количество критериев, проверяющих эту гипотезу: | ||
+ | *[[Быстрый критерий Кенуя]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 452 </ref> | ||
+ | |||
+ | [[Ранговые критерии]] сдвига для двух выборок: | ||
+ | * [[Быстрый ранговый критерий]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 453 </ref> | ||
+ | * [[Критерий Уилкоксона-Манна-Уитни]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 454 </ref> | ||
+ | * [[Критерий Фишера-Йэйтса-Терри-Гёфдинга]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 459 </ref> | ||
+ | * [[Критерий Ван дер Вардена ]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 460 </ref> | ||
+ | * [[Медианный критерий]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 462</ref> | ||
+ | * [[Критерий Хаги]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 464 </ref> | ||
+ | * [[E-Критерий]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 465 </ref> | ||
+ | |||
+ | [[Ранговые критерии]] сдвига для нескольких (k>2) выборок: | ||
+ | *[[Критерий Краскела-Уоллиса]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 466 </ref> | ||
+ | * [[Критерий Ван дер Вардена ]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 475 </ref> | ||
+ | *[[Медианный критерий]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 475</ref> | ||
+ | *[[Критерий Левиса]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 479</ref> | ||
+ | *[[Критерий Краузе]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c.481 </ref> | ||
+ | *[[Критерий Пейджа]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c.482 </ref> | ||
+ | *[[Критерий Вилкоксона-Вилкокс]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 471 </ref> | ||
+ | * [[Критерий Фишера-Йэйтса-Терри-Гёфдинга]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 473 </ref> | ||
+ | *[[Быстрый критерий Кенуя]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 473 </ref> | ||
+ | *[[Критерий Джонкхиера]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 477 </ref> | ||
+ | *[[Критерий Неменьи]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 469 </ref> | ||
+ | *[[Критерий Фридмана|Критерий Фридмена-Кендалла-Бэбингтона-Смита]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 484 </ref> | ||
+ | *[[Критерий Хеттманспергера]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 476 </ref> | ||
+ | *[[Критерий Андерсона-Каннемана-Шэча]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 486 </ref> | ||
+ | *[[Критерий со взвешенными ранжировками Даны Квейд]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 487 </ref> | ||
+ | *[[Критерий Кендалла-Эренберга]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 489 </ref> | ||
+ | *[[Критерий Ходжеса-Лемана-Сена]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 490 </ref> | ||
+ | |||
== Непараметрические критерии масштаба == | == Непараметрические критерии масштаба == | ||
+ | Для двух выборок <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>. | ||
+ | проверяется гипотеза о том, что они принадлежат одному и тому же распределению, | ||
+ | но с разным параметром масштаба. | ||
+ | Если плотность распределения первой выборки — <tex>f(x)</tex>, а второй выборки — | ||
+ | <tex>\frac{1}{\tau}f( \frac{x}{\tau})</tex>, то нулевая гипотеза <tex>H_0: \tau \ne 1</tex>. | ||
+ | |||
+ | [[Ранговые критерии]] масштаба для двух выборок: | ||
+ | *[[Критерий Ансари—Бредли]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 492 </ref> | ||
+ | *[[Критерий Сижела-Тьюки]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 495 </ref> | ||
+ | *[[Критерий Кейпена]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 496 </ref> | ||
+ | *[[Критерий Клотца]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 499 </ref> | ||
+ | *[[Критерий Сэвиджа]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 502 </ref> | ||
+ | *[[Критерий Муда]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 504 </ref> | ||
+ | *[[Критерий Сукхатме]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 505 </ref> | ||
+ | *[[Критерий Сэндвика-Олсона]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 507 </ref> | ||
+ | *[[Критерий Камата]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 509 </ref> | ||
+ | *[[Комбинированный критерий Буша-Винда]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 511 </ref> | ||
+ | |||
+ | [[Ранговые критерии]] масштаба нескольких (k>2) выборок: | ||
+ | *[[Критерий Бхапкара-Дешпанде]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 514 </ref> | ||
+ | |||
== Двухвыборочные критерии согласия == | == Двухвыборочные критерии согласия == | ||
+ | *[[Двухвыборочный критерий Колмогорова-Смирнова]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 227 </ref> | ||
+ | *[[Критерий Катценбайссера-Хакля]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 228 </ref> | ||
+ | *[[Двухвыборочный критерий Андерсона]] <ref> ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006, c. 229 </ref> | ||
= Параметрические критерии однородности = | = Параметрические критерии однородности = | ||
== Сравнение параметров нормальных распределений == | == Сравнение параметров нормальных распределений == | ||
+ | === Сравнение двух средних значений === | ||
+ | Имеются две выборки независимых случайных величин <tex> x_1, x_2, \dots, x_n; \qquad y_1, y_2, \dots, y_n.</tex> | ||
+ | Необходимо на основе выборочных данных установить наличие значимой разницы в средних двух совокупностей, из которых извлечены выборки. | ||
+ | |||
+ | '''Нулевая гипотеза:''' <tex> H_0: \mu_1 = \mu_2 </tex> | ||
+ | |||
+ | '''Альтернативы:''' <tex>H_1: \mu_1 \neq \mu_2; \qquad H_1': \mu_1 > \mu_2; \qquad H_1'': \mu_1 < \mu_2; \qquad</tex> | ||
== Сравнение параметров экспоненциальных распределений == | == Сравнение параметров экспоненциальных распределений == | ||
== Сравнение параметров биномиальных распределений == | == Сравнение параметров биномиальных распределений == | ||
- | |||
=Ссылки= | =Ссылки= |
Версия 14:24, 6 января 2010
Критерии однородности - это критерии проверки гипотез о том, что две (или более) выборки взяты из одного распределения вероятностей. Рассмотрим такую классификацию критериев:
- Непараметрические (свободные от распределения) критерии однородности не предполагают присутствие какой-либо фундаментальной информации о законе распределения. Любое распределение можно описать параметром положения, характеризующим центр группирования случайных величин, и параметром масштаба, характеризующим степень рассеяния случайных величин относительно центра группирования. Когда закон распределения неизвестен, гипотезы о параметрах проверяются при помощи специальных критериев сдвига и масштаба. Также существуют двухвыборочные критерии согласия.
- Непараметрические критерии сдвига.
- Непараметрические критерии масштаба.
- Двухвыборочные критерии согласия.
- Если же принимаются какие-либо дополнительные предположения о законе распределения вероятностей, то можно применять
параметрические критерии однородности.
Содержание |
Непараметрические критерии однородности
Непараметрические критерии сдвига
Проверяется гипотеза сдвига, согласно которой распределения двух выборок имеют одинаковую форму и отличаются только сдвигом на константу. Пусть заданы две выборки ,взятые из неизвестных непрерывных распределений и соответственно.
Нулевая гипотеза —
Наиболее частая альтернативная гипотеза' - .
Существует большое количество критериев, проверяющих эту гипотезу:
Ранговые критерии сдвига для двух выборок:
- Быстрый ранговый критерий [2]
- Критерий Уилкоксона-Манна-Уитни [3]
- Критерий Фишера-Йэйтса-Терри-Гёфдинга [4]
- Критерий Ван дер Вардена [5]
- Медианный критерий [6]
- Критерий Хаги [7]
- E-Критерий [8]
Ранговые критерии сдвига для нескольких (k>2) выборок:
- Критерий Краскела-Уоллиса [9]
- Критерий Ван дер Вардена [10]
- Медианный критерий [11]
- Критерий Левиса [12]
- Критерий Краузе [13]
- Критерий Пейджа [14]
- Критерий Вилкоксона-Вилкокс [15]
- Критерий Фишера-Йэйтса-Терри-Гёфдинга [16]
- Быстрый критерий Кенуя [17]
- Критерий Джонкхиера [18]
- Критерий Неменьи [19]
- Критерий Фридмена-Кендалла-Бэбингтона-Смита [20]
- Критерий Хеттманспергера [21]
- Критерий Андерсона-Каннемана-Шэча [22]
- Критерий со взвешенными ранжировками Даны Квейд [23]
- Критерий Кендалла-Эренберга [24]
- Критерий Ходжеса-Лемана-Сена [25]
Непараметрические критерии масштаба
Для двух выборок . проверяется гипотеза о том, что они принадлежат одному и тому же распределению, но с разным параметром масштаба. Если плотность распределения первой выборки — , а второй выборки — , то нулевая гипотеза .
Ранговые критерии масштаба для двух выборок:
- Критерий Ансари—Бредли [26]
- Критерий Сижела-Тьюки [27]
- Критерий Кейпена [28]
- Критерий Клотца [29]
- Критерий Сэвиджа [30]
- Критерий Муда [31]
- Критерий Сукхатме [32]
- Критерий Сэндвика-Олсона [33]
- Критерий Камата [34]
- Комбинированный критерий Буша-Винда [35]
Ранговые критерии масштаба нескольких (k>2) выборок:
Двухвыборочные критерии согласия
- Двухвыборочный критерий Колмогорова-Смирнова [37]
- Критерий Катценбайссера-Хакля [38]
- Двухвыборочный критерий Андерсона [39]
Параметрические критерии однородности
Сравнение параметров нормальных распределений
Сравнение двух средних значений
Имеются две выборки независимых случайных величин Необходимо на основе выборочных данных установить наличие значимой разницы в средних двух совокупностей, из которых извлечены выборки.
Нулевая гипотеза:
Альтернативы:
Сравнение параметров экспоненциальных распределений
Сравнение параметров биномиальных распределений
Ссылки
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 452
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 453
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 454
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 459
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 460
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 462
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 464
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 465
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 466
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 475
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 475
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 479
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c.481
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c.482
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 471
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 473
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 473
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 477
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 469
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 484
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 476
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 486
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 487
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 489
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 490
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 492
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 495
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 496
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 499
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 502
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 504
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 505
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 507
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 509
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 511
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 514
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 227
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 228
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006, c. 229
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
См. также
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Статистика (функция выборки)
- Критерии согласия
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |