Алгебра над алгоритмами и эвристический поиск закономерностей
Материал из MachineLearning.
(Различия между версиями)
(→Участники спецсеминара) |
|||
Строка 3: | Строка 3: | ||
{{TOCright}} | {{TOCright}} | ||
- | ==Работа на спецсеминаре== | + | == Работа на спецсеминаре == |
'''В рамках работы на спецсеминаре есть два направления исследования:''' | '''В рамках работы на спецсеминаре есть два направления исследования:''' | ||
- | # '''Теоретическое.''' Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т.д. Доказано ([[Журавлев, Юрий Иванович|Ю. | + | # '''Теоретическое.''' Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т. д. Доказано ([[Журавлев, Юрий Иванович|Ю. И. Журавлёвым]]), что среди получаемых алгебраических выражений над «естественными» алгоритмами есть высокоэффективные алгоритмы. На спецсеминаре рассматриваются вопросы: как их строить, анализировать, реализовывать на ЭВМ и т. д. и т. п. Данное направление представляет особую ценность студентам, которые хотят получить самостоятельные результаты в науке и продолжить обучение в аспирантуре. |
# '''Прикладное.''' Решаются реальные прикладные задачи анализа данных (data mining). Например, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно). | # '''Прикладное.''' Решаются реальные прикладные задачи анализа данных (data mining). Например, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно). | ||
- | ==Участники спецсеминара== | + | == Участники спецсеминара == |
{| border="1" | {| border="1" | ||
Строка 15: | Строка 15: | ||
|Аспирант, 2010|| | |Аспирант, 2010|| | ||
'''Карпович Павел''' | '''Карпович Павел''' | ||
- | * Карпович П.А. k-сингулярные системы точек в пространстве l1 // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. | + | * Карпович П. А. k-сингулярные системы точек в пространстве l1 // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.34. |
- | * Карпович П. | + | * Карпович П. А. Эффективная реализация алгоритмов распознавания образов // Журнал вычислительной математики и математической физики, 2009, Т. 49, № 8. C.1510-1516 |
- | * Карпович П.А. О задаче разделения системы точек в пространсте l1 на подсистемы с невырождеными матрицами попарных расстояний // Тезисы конференции МФТИ, Секция проблем интеллектуального анализа данных, распознавания и прогнозирования. | + | * Карпович П. А. О задаче разделения системы точек в пространсте l1 на подсистемы с невырождеными матрицами попарных расстояний // Тезисы конференции МФТИ, Секция проблем интеллектуального анализа данных, распознавания и прогнозирования. — М.: ГОУ ВПО «Московский физико-технический институт (государственный университет)», 2009. — С. 52. |
- | * Карпович П.А., Дьяконов А. | + | * Карпович П. А., Дьяконов А. Г. Критерий k-сингулярности систем точек в алгебраическом подходе к распознаванию // 14-я Всероссийская конференция «Математические методы распознавания образов» Владимирская обл., г. Суздаль, 21-26 сентября 2009 г.: Сборник докладов. — М. МАКС Пресс, 2009. С. 41-44. |
|- | |- | ||
|2012|| | |2012|| | ||
'''[[Участник:Platonova.Elena|Платонова Елена]]''' | '''[[Участник:Platonova.Elena|Платонова Елена]]''' | ||
- | * Семестровая работа (5 семестр) | + | * Семестровая работа (5 семестр) «[[Муравьиные алгоритмы]]» |
|- | |- | ||
|2010|| | |2010|| | ||
Строка 35: | Строка 35: | ||
'''Власова Юлия''' | '''Власова Юлия''' | ||
* Дипломная работа [[Media:Vlasova2009.pdf| «Генерация признаков в задаче классификации сигналов» (PDF, 929 КБ)]]. | * Дипломная работа [[Media:Vlasova2009.pdf| «Генерация признаков в задаче классификации сигналов» (PDF, 929 КБ)]]. | ||
- | * Власова Ю. | + | * Власова Ю. В. Применение генетических алгоритмов в задаче классификации сигналов (приложение в BCI) // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.17. |
- | * Власова Ю. | + | * Власова Ю. В. Применение генетических алгоритмов в задаче классификации сигналов (приложение в BCI) // Доклады 14-й Всероссийской конференции «Математические методы распознавания образов», М.: МАКС Пресс, 2009, С. 96-99. |
- | '''Логинов Вячеслав''' | + | '''Логинов Вячеслав''' |
* Дипломная работа «Прогнозирование временных рядов с помощью рекуррентных нейросетей с откликом» | * Дипломная работа «Прогнозирование временных рядов с помощью рекуррентных нейросетей с откликом» | ||
'''Фёдорова Валентина''' | '''Фёдорова Валентина''' | ||
* Дипломная работа «Локальные методы прогнозирования временных рядов» | * Дипломная работа «Локальные методы прогнозирования временных рядов» | ||
- | * Федорова В. | + | * Федорова В. П. Локальные методы прогнозирования временных рядов // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.87. |
'''Чучвара Алексндра''' (бакалавр) | '''Чучвара Алексндра''' (бакалавр) | ||
* Квалификационная работа «Частичное машинное обучение в задачах классификации текстов» | * Квалификационная работа «Частичное машинное обучение в задачах классификации текстов» | ||
Строка 62: | Строка 62: | ||
'''Ховратович (Курятникова) Татьяна''' | '''Ховратович (Курятникова) Татьяна''' | ||
* Дипломная работа «Критерии корректности в задачах распознавания образов с малым числом признаков» | * Дипломная работа «Критерии корректности в задачах распознавания образов с малым числом признаков» | ||
- | * Курятникова Т. | + | * Курятникова Т. С. Критерии корректности алгебраического и линейного замыкания АВО для малых размерностей // Материалы XII Международной конференции студентов, аспирантов и молодых учёных «Ломоносов», секция «Вычислительная математика и кибернетика». М.: Изд. отд. ВМиК МГУ, 2006. — c. 32-33. |
'''Мошин Николай''' | '''Мошин Николай''' | ||
* Дипломная работа «Эффективная реализация алгоритмов решения задачи выполнимости» | * Дипломная работа «Эффективная реализация алгоритмов решения задачи выполнимости» | ||
Строка 73: | Строка 73: | ||
|} | |} | ||
- | ==Некоторые решаемые прикладные задачи== | + | == Некоторые решаемые прикладные задачи == |
* [http://www.neural-forecasting-competition.com/ Прогнозирование временных рядов] По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным. Типичный пример: прогнозирование денежных сумм, которые будут сниматься с банкомата в течение следующей недели. | * [http://www.neural-forecasting-competition.com/ Прогнозирование временных рядов] По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным. Типичный пример: прогнозирование денежных сумм, которые будут сниматься с банкомата в течение следующей недели. | ||
* Классификация [http://home.comcast.net/~nn_classification/ технических сигналов] и [http://www.bbci.de/competition сигналов головного мозга] По описанию изменения некоторой характеристики процесса необходимо определить её класс. Например, по электрокортикограмме определить ментальное состояние человека. При этом обучающая выборка (данные, которые у нас есть) была собрана достаточно давно, а тестирование алгоритма будет проводиться потом (при изменённых внешних условиях, а следовательно, при изменённых характеристиках данных). | * Классификация [http://home.comcast.net/~nn_classification/ технических сигналов] и [http://www.bbci.de/competition сигналов головного мозга] По описанию изменения некоторой характеристики процесса необходимо определить её класс. Например, по электрокортикограмме определить ментальное состояние человека. При этом обучающая выборка (данные, которые у нас есть) была собрана достаточно давно, а тестирование алгоритма будет проводиться потом (при изменённых внешних условиях, а следовательно, при изменённых характеристиках данных). | ||
* [http://www.ecmlpkdd2006.org/challenge.html Фильтрация спама] Настроить спам-фильтр на некотором универсальном обучающем множестве (данных спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки). | * [http://www.ecmlpkdd2006.org/challenge.html Фильтрация спама] Настроить спам-фильтр на некотором универсальном обучающем множестве (данных спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки). | ||
- | * [http://lshtc.iit.demokritos.gr/ Иерархическая классификация текстов] Написать алгоритм автоматической категоризации документов. Например, новостные рассылки необходимо распределить по каталогам | + | * [http://lshtc.iit.demokritos.gr/ Иерархическая классификация текстов] Написать алгоритм автоматической категоризации документов. Например, новостные рассылки необходимо распределить по каталогам «спорт/футбол», «спорт/биатлон», «музыка/концерты», «музыка/рок/исполнители» и т. д. |
- | * [http://imat2009.yandex.ru/ Ранжирование документов на основе обучающего множества] Написать алгоритм, который оценивает релевантность документа поисковому запросу. Для фиксированного запроса упорядочить документы (используя их признаковые описания) так, чтобы порядок отражал | + | * [http://imat2009.yandex.ru/ Ранжирование документов на основе обучающего множества] Написать алгоритм, который оценивает релевантность документа поисковому запросу. Для фиксированного запроса упорядочить документы (используя их признаковые описания) так, чтобы порядок отражал «адекватность» запроса. |
[[Категория:Учебные курсы]] | [[Категория:Учебные курсы]] |
Версия 20:56, 12 февраля 2010
Руководитель спецсеминара: к.ф.-м.н. Дьяконов Александр Геннадьевич
|
Работа на спецсеминаре
В рамках работы на спецсеминаре есть два направления исследования:
- Теоретическое. Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т. д. Доказано (Ю. И. Журавлёвым), что среди получаемых алгебраических выражений над «естественными» алгоритмами есть высокоэффективные алгоритмы. На спецсеминаре рассматриваются вопросы: как их строить, анализировать, реализовывать на ЭВМ и т. д. и т. п. Данное направление представляет особую ценность студентам, которые хотят получить самостоятельные результаты в науке и продолжить обучение в аспирантуре.
- Прикладное. Решаются реальные прикладные задачи анализа данных (data mining). Например, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно).
Участники спецсеминара
Год выпуска | Участники: |
---|---|
Аспирант, 2010 |
Карпович Павел
|
2012 |
|
2010 |
Ахламченкова Ольга
Одинокова Евгения
|
Выпускники: | |
2009 |
Власова Юлия
Логинов Вячеслав
Фёдорова Валентина
Чучвара Алексндра (бакалавр)
|
2008 |
Ломова Дарья
Вершкова Ирина
|
2007 |
Кнорре Анна
Карпович Павел
Сиваченко Евгений
|
2006 |
Ховратович (Курятникова) Татьяна
Мошин Николай
|
2005 |
Каменева Наталия
Силкин Леонид
|
Некоторые решаемые прикладные задачи
- Прогнозирование временных рядов По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным. Типичный пример: прогнозирование денежных сумм, которые будут сниматься с банкомата в течение следующей недели.
- Классификация технических сигналов и сигналов головного мозга По описанию изменения некоторой характеристики процесса необходимо определить её класс. Например, по электрокортикограмме определить ментальное состояние человека. При этом обучающая выборка (данные, которые у нас есть) была собрана достаточно давно, а тестирование алгоритма будет проводиться потом (при изменённых внешних условиях, а следовательно, при изменённых характеристиках данных).
- Фильтрация спама Настроить спам-фильтр на некотором универсальном обучающем множестве (данных спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки).
- Иерархическая классификация текстов Написать алгоритм автоматической категоризации документов. Например, новостные рассылки необходимо распределить по каталогам «спорт/футбол», «спорт/биатлон», «музыка/концерты», «музыка/рок/исполнители» и т. д.
- Ранжирование документов на основе обучающего множества Написать алгоритм, который оценивает релевантность документа поисковому запросу. Для фиксированного запроса упорядочить документы (используя их признаковые описания) так, чтобы порядок отражал «адекватность» запроса.