Тупиковые тесты
Материал из MachineLearning.
м |
м (→Построение тупиковых тестов) |
||
Строка 82: | Строка 82: | ||
#Пусть <tex>i=h, \ U_i=\{1,2,\ldots,h\}</tex>, задача построения множества всех тупиковых тестов таблицы <tex>T_{nml}</tex> сводится к построению множества всех неприводимых покрытий матрицы <tex>L_{nml}</tex>. В этом случае используется детерминированный алгоритм. | #Пусть <tex>i=h, \ U_i=\{1,2,\ldots,h\}</tex>, задача построения множества всех тупиковых тестов таблицы <tex>T_{nml}</tex> сводится к построению множества всех неприводимых покрытий матрицы <tex>L_{nml}</tex>. В этом случае используется детерминированный алгоритм. | ||
#Пусть <tex>i<h</tex>. | #Пусть <tex>i<h</tex>. | ||
- | ##Случайным образом выбираем набор <tex>u=\{i_1,\ldots,\i_r\} \in U_i</tex>, определяющий подматрицу <tex>L^u_{nml}</tex>, образованную строками с номерами <tex>i_1,\ldots, | + | ##Случайным образом выбираем набор <tex>u=\{i_1,\ldots,\i_r\} \in U_i</tex>, определяющий подматрицу <tex>L^u_{nml}</tex>, образованную строками с номерами <tex>i_1,\ldots,i_r</tex>.<br /> |
- | ##Тест таблицы <tex>T_{nml}</tex>, состоящий из столбцов <tex>j_1,\ldots,\j_r</tex> называется ''u-тестом'', если набор столбцов матрицы <tex>L^u_{nml}</tex> с теми же номерами является неприводимым покрытием. <tex>\ | + | ##Тест таблицы <tex>T_{nml}</tex>, состоящий из столбцов <tex>j_1,\ldots,\j_r</tex> называется ''u-тестом'', если набор столбцов матрицы <tex>L^u_{nml}</tex> с теми же номерами является неприводимым покрытием. <tex>\mathcal{T}(T_{nml},u)</tex> - множество всех u-тестов в таблице <tex>T_{nml}</tex>. |
##Каждому неприводимому покрытию матрицы <tex>L_{nml}</tex> соответствует набор столбцов таблицы <tex>T_{nml}</tex>, который проверяется на тестовость. | ##Каждому неприводимому покрытию матрицы <tex>L_{nml}</tex> соответствует набор столбцов таблицы <tex>T_{nml}</tex>, который проверяется на тестовость. | ||
- | ##Обработка последовательности <tex>u_1,\ldots,u_v</tex> приводит к построению случайной выборки <tex>\ | + | ##Обработка последовательности <tex>u_1,\ldots,u_v</tex> приводит к построению случайной выборки <tex>\mathcal{T}'(T_{nml})=\bigcup^{v}_{t=1}{\mathcal{T}(T_{nml},u_t)}</tex>. В этом случае используется стохастический способ построения тупиковых тестов. |
'''Замечание:''' Требуемая точность алгоритмов зависит от выбора параметров i и v. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, <tex>i=\log^{\gamma}_2 n, \ \gamma >3</tex>. для решения практических задач достаточно выбрать <tex>i=\log_2 n, v=20</tex>. | '''Замечание:''' Требуемая точность алгоритмов зависит от выбора параметров i и v. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, <tex>i=\log^{\gamma}_2 n, \ \gamma >3</tex>. для решения практических задач достаточно выбрать <tex>i=\log_2 n, v=20</tex>. | ||
Версия 13:55, 14 февраля 2010
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Алгоритм вычисления оценки, в котором множество опорных множеств является множеством всех тупиковых тестов, называется тестовым алгоритмом. Первый вариант таких АВО был предложен Ю.И. Журавлевым. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследует принцип оценивания сходства через введение множества метрик , а от логических принцип поиска конъюнктивных закономерностей, конъюнкции строятся не над бинарными признаками , а над бинарными функциями близости вида . В этом случае каждой закономерности соответствует не подмножество признаков, а подмножество метрик, называемое опорным множеством. Как правило одного опорного множества недостаточно, поэтому в АВО применяется взвешенное голосование по системе опорных множеств.
Содержание |
Описание АВО, основанных на тупиковых тестах
Формулировка задачи
Задача распознавания: - множество непересекающихся классов объектов.
Первоначальная информация (обучающая) и описание некоторого объекта , .
Объект задается через набор числовых признаков .
Задача распознавания состоит в определении включения заданного объекта в классы .
В случае АВО, основанных на тупиковых тестах, начальная информация задается таблицей:
- - таблица признаков объектов в обучающей выборке;
- - описание объекта из обучающей выборки;
- - выражение, определяющее включение объектов в классы;
Алгоритм распознавания, где .
Строение АВО
- - система опорных множеств;
- Вводится функция близости для двух объектов по опорному множеству :
где неотрицательные числа, называемые порогами,
- Вводится оценка близости объекта к классу
- Вычисление алгоритма проводится по правилу:
- пороги осторожности.
Строение АВО, основанного на тупиковых тестах
- Вводится система опорных множеств ;
- Задается функция близости для двух объектов по опорному множеству :
. Если , объекты не являются близкими по опорному множеству.
Тупиковые тесты
Тестом называется набор столбцов таблицы обучения с номерами , если любые два объекта, принадлежащие разным классам , не являются близкими по опорному множеству .
Тупиковым тестом называется тест, у которого его собственное подмножество не является таковым.
Задача распознавания на основе тупиковых тестов решается следующим образом.
Пусть - множество тупиковых тестов таблицы . По тупиковому тесту выделяется подописание для распознаваемого объекта , а затем сравнивается со всеми подописаниями объектов таблицы. Число совпадений с описаниями объектов i-го класса обозначается через .
Оценка объекта по i-ому классу .
Далее объект относится к тому классу,по которому он получил максимальную оценку, в случае двух максимумов считается, что объект не классифицируется на заданном тесте.
Если считать, что не все признаки, описывающие объект, равнозначны, то они снабжаются числовыми весами , где - число тупиковых тестов в таблице, -число тупиковых тестов в таблице, содержащих j-ый столбец. Чем больше вес, тем важнее признак в описании объектов множества. Весами объектов, составляющих таблицу обучения, называется поощрительная величина . В случае совпадения распознаваемого объекта с объектом из таблицы , такое совпадение поощряется: , Оценка объекта по i-ому классу задается таким образом .
Построение тупиковых тестов
Процесс построения всех тупиковых тестов очень трудоемкий, так как зачастую приходится использовать метод перебора. Для решения задач большой размерности применяются стохастические методы. Для обработки таблиц с относительно большим числом строк по сравнению с числом столбцов может применяться следующий метод.
- Пусть .
Паре объектов и ставится в соответствие строка , если :
- Составим булеву матрицу из всех таких строк для объектов из разных классов.
- - совокупность всех подмножеств множества мощности i - выбранного числа из этого множества. h - число строк в матрице . Элементы множества называются наборами.
- Алгоритм построения тупиковых тестов:
- Пусть , задача построения множества всех тупиковых тестов таблицы сводится к построению множества всех неприводимых покрытий матрицы . В этом случае используется детерминированный алгоритм.
- Пусть .
- Случайным образом выбираем набор , определяющий подматрицу , образованную строками с номерами .
- Тест таблицы , состоящий из столбцов называется u-тестом, если набор столбцов матрицы с теми же номерами является неприводимым покрытием. - множество всех u-тестов в таблице .
- Каждому неприводимому покрытию матрицы соответствует набор столбцов таблицы , который проверяется на тестовость.
- Обработка последовательности приводит к построению случайной выборки . В этом случае используется стохастический способ построения тупиковых тестов.
- Случайным образом выбираем набор , определяющий подматрицу , образованную строками с номерами .
Замечание: Требуемая точность алгоритмов зависит от выбора параметров i и v. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, . для решения практических задач достаточно выбрать .
Литература
- К.В. Воронцов, Машинное обучение (курс лекций)
- Журавлев Ю. И. Об алгебраических методах в задачах распознавания и классификации // Распознавание, классификация, прогноз. — 1988 T. 1. — С. 9--16.
- Бушманов О. Н., Дюкова Е. В., Журавлев Ю. И., Кочетков Д. В., Рязанов В. В. Система анализа и распознавания образов // Распознавание, классификация, прогноз. — М.: Наука, 1989. — T. 2. — С. 250–273.