SVM для линейно разделимой выборки (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Содержимое страницы заменено на « {{Задание|Алексей Морозов|В.В.Стрижов|28 мая 2010}} [[Категория:Учебные матер...»)
Строка 1: Строка 1:
 +
'''[[Машина опорных векторов]] (SVM — support vector machines)''' — группа алгоритмов классификации, основанных на обучении с учителем, использующих линейное разделение объектов в пространстве признаков с помощью гиперплоскости. Метод применяется для решения задачи бинарной классификации. Основной проблемой метода является выбор оптимальной гиперплоскости, которая позволяет разделить классы с максимальной точностью. Для этого разделяющая гиперплоскость должна быть выбрана таким образом, чтобы расстояние междуближайшими точками, расположенными по разные стороны от нее, было бы максимальным. Данное расстояние называется зазором (margin), а сами точки – оперными векторами (support vectors). Тогда разделяющая гиперплоскость должна быть выбрана таким образом, чтобы максимизировать зазор, что обеспечит более уверенное разделение классов.
 +
 +
 +
В данной статье приведен пример решения этой задачи для линейно разделимой выборки. Также исследуется устойчивость алгоритма: зависимость параметров разделяющей гиперплоскости от дисперсии случайной переменной.
 +
 +
== Постановка задачи линейной классификации ==
 +
 +
Рассматривается задача обучения по прецедентам <tex>\left \langle X,\ Y,\ y*,\ X^\ell \right \rangle</tex> - , где <tex>X</tex> - пространство объектов, <tex>Y</tex> - множество ответов, <tex>y*:\ X \rightarrow Y</tex> - целевая зависимость, значения которой известны только на объектах обучающей выборки <tex>X=\(x_i,y_i\)_{i=1}^\ell\ ,\ y_i = y*(x_i)</tex>. Требуется построить алгоритм <tex>a:\ X \rightarrow Y</tex>, аппроксимирующий целевую
 +
зависимость на всём пространстве <tex>X</tex>.
 +
 +
Требуется построить задачу классификации на два непересекающихся класса, в которой объекты описываются n-мерными вещественными векторами<tex>:\ X\ =\ \mathbb{R}^n,\ Y\ =\ \{-1,+1\}</tex>.
 +
 +
Будем строить линейный пороговый классификатор:
 +
::<tex>a(x)\ =\ sign(\sum_{j=1}^n w_jx^j\ -\ w_0)\ =\ sign(<w,x>\ -\ w_0)</tex>,
 +
где <tex>x\ =\ (x^1,...,x^n)</tex> - признаковое описание объекта <tex>x</tex>; вектор <tex>w\ =\ (w^1,...,w^n)\ \in\ \mathbb{R}</tex> и скалярный порог <tex>w_0\ in\ \mathbb{R}</tex> являются параметрами алгоритма.
 +
 +
Уравнение <tex><w,x>\ =\ w_0</tex> описывает гиперплоскость, разделяющую классы в про-
 +
странстве <tex>\mathbb{R}^n</tex>.
 +
 +
== Описание алгоритма ==
 +
=== Понятие оптимальной разделяющей гиперплоскости ===
 +
 +
 +
Предположим, что выборка <tex>X=\(x_i,y_i\)_{i=1}^\ell\</tex> линейно разделима. Тогда существуют значения параметров <tex>w,\ w_0</tex>, при которых функционал числа ошибок
 +
::<tex>Q(w,w_0)\ =\ \sum_{i=1}^\ell [y_i(<w,x_i>\ -\ w_0)\ <\ 0]</tex>
 +
 +
принимает нулевое значение. Но тогда разделяющая гиперплоскость не единствен-
 +
на. Можно выбрать другие её положения, реализующие такое же разбиение выборки
 +
на два класса. Идея метода заключается в том, чтобы разумным образом распоря-
 +
диться этой свободой выбора.
 +
 +
Потребуем, чтобы разделяющая
 +
гиперплоскость максимально далеко отстояла от ближайших к ней точек обоих клас-
 +
сов. Первоначально данный принцип классификации возник из эвристических сооб-
 +
ражений: вполне естественно полагать, что максимизация зазора (margin) между
 +
классами должна способствовать более надёжной классификации.
 +
 +
Заметим, что параметры линейного порогового классификатора опре-
 +
делены с точностью до нормировки: алгоритм <tex>a(x)</tex> не изменится, если <tex>w</tex> и <tex>w_0</tex> одно-
 +
временно умножить на одну и ту же положительную константу. Удобно выбрать эту константу таким образом, чтобы для всех пограничных (т. е. ближайших к разделя-
 +
ющей гиперплоскости) объектов <tex>x_i</tex> из <tex>X^\ell</tex> выполнялись условия
 +
::<tex><w,x_i>\ -\ w_0\ =\ y_i</tex>.
 +
 +
Сделать это возможно, поскольку при оптимальном положении разделяющей гипер-
 +
плоскости все пограничные объекты находятся от неё на одинаковом расстоянии.
 +
Остальные объекты находятся дальше. Таким образом, для всех <tex>x_i\ \in\ X^\ell</tex>
 +
{{eqno|1}}
 +
<tex><w,x_i> - w_0
 +
\begin{cases}
 +
\le -1, & \mbox{if }y_i=-1; \\
 +
\ge 1, & \mbox{if }y_i=+1.
 +
\end{cases}
 +
</tex>
 +
 +
Условие <tex>-1\ <\ \left \Big\langle w,x \right \Big\rangle -w_0<\ 1\ </tex> задаёт полосу, разделяющую классы. Ширина полосы, как не сложно показать, равна <tex>\frac{2}{||w||}</tex>. Она максимальна, когда норма вектора <tex>w</tex> минимальна.
 +
 +
=== Линейно разделимая выборка ===
 +
Построение оптимальной разделяющей гиперплоскости сводится к минимизации квадратичной формы при <tex>\ell</tex> ограничениях-неравенствах вида {{eqref|1}} относительно <tex>n+1</tex> переменных <tex>w,\ w_0:</tex>
 +
::<tex>\left{<w,w>\rightarrow min\\y_i(<w,x_i>-w_0)\ge1,\qquad i=1,...,\ell\\ \right.</tex>
 +
 +
Используя аппарат функций Лагранжа, перейдем к решению двойственной задаче. Несложно показать эквивалентность этой задачи и следующей:
 +
::<tex>\left{-\mathcal{L}(\lambda)=-\sum\limits_{i=1}^\ell\lambda_i+\frac{1}{2}\sum\limits_{i=1}^\ell\sum\limits_{j=1}^\ell\lambda_i\lambda_jy_iy_j(<x_i,x_j>)\rightarrow \min\limits_\lambda \\ \lambda_i\ge 0\quad, i=1,...,\ell\\ \sum\limits_{i=1}^\ell\lambda_iy_i=0\quad\right. </tex>
 +
 +
Вектор весов будем искать в ввиде <tex>w = \sum\limits_{i=1}^l\lambda_ix_iy_i</tex>. Для определения порога <tex>w_0</tex> достаточно взять произвольный опорный вектор <tex>x_i</tex> и выразить <tex>w_0</tex> из равенства <tex>w_0=<w,x_i>-y_i</tex>. На практике для повышения численной устойчивости лучше взять в качестве <tex>w_0</tex> медиану: <tex>w_0=med\{<w_i,x_i>-y_i:\ \lambda_i>0,\ i=1,...,\ell\}</tex>. Параметры полосы найдены и можно строить разделяюую полосу.
 +
 +
== Устойчивость алгоритма SVM для линейно разделимой выборки ==
 +
 +
Предположим что дана выбрка
 +
::<tex>\{ \mathbf{x}_0 = \mathbf{0},\mathbf{x}_1 = \sigma \mathbf{e}_1,...,\mathbf{x}_m = \sigma \mathbf{e}_m\} \in \mathbb{R}^m </tex>
 +
::<tex>\{ y_0 = -1,y_1 = 1,...,y_m = 1\}</tex>
 +
В этом случае задача SVM сводится к задаче
 +
::<tex>\frac{1}{2}\sum\limits_{i=1}^m\alpha_i^2\sigma_i^2-2\sum\limits_i\alpha_i \rightarrow min\limits_\alpha </tex>
 +
 +
где <tex> \alpha_0=\sum\limits_{i=1}^m\alpha_i </tex>.
 +
 +
 +
 +
== Вычислительный эксперимент ==
 +
 +
== Смотри также ==
 +
* [[ Машина опорных векторов ]]
 +
* [[ Линейный классификатор ]]
 +
* [[ Численные методы обучения по прецедентам (практика, В.В. Стрижов) ]]
 +
* [[ SVM для линейно неразделимой выборки (пример) ]]
 +
{{Задание|Алексей Морозов|В.В.Стрижов|28 мая 2010}}
{{Задание|Алексей Морозов|В.В.Стрижов|28 мая 2010}}

Версия 07:28, 28 апреля 2010

Машина опорных векторов (SVM — support vector machines) — группа алгоритмов классификации, основанных на обучении с учителем, использующих линейное разделение объектов в пространстве признаков с помощью гиперплоскости. Метод применяется для решения задачи бинарной классификации. Основной проблемой метода является выбор оптимальной гиперплоскости, которая позволяет разделить классы с максимальной точностью. Для этого разделяющая гиперплоскость должна быть выбрана таким образом, чтобы расстояние междуближайшими точками, расположенными по разные стороны от нее, было бы максимальным. Данное расстояние называется зазором (margin), а сами точки – оперными векторами (support vectors). Тогда разделяющая гиперплоскость должна быть выбрана таким образом, чтобы максимизировать зазор, что обеспечит более уверенное разделение классов.


В данной статье приведен пример решения этой задачи для линейно разделимой выборки. Также исследуется устойчивость алгоритма: зависимость параметров разделяющей гиперплоскости от дисперсии случайной переменной.

Содержание

Постановка задачи линейной классификации

Рассматривается задача обучения по прецедентам \left \langle X,\ Y,\ y*,\ X^\ell \right \rangle - , где X - пространство объектов, Y - множество ответов, y*:\ X \rightarrow Y - целевая зависимость, значения которой известны только на объектах обучающей выборки X=\(x_i,y_i\)_{i=1}^\ell\ ,\ y_i = y*(x_i). Требуется построить алгоритм a:\ X \rightarrow Y, аппроксимирующий целевую зависимость на всём пространстве X.

Требуется построить задачу классификации на два непересекающихся класса, в которой объекты описываются n-мерными вещественными векторами:\ X\ =\ \mathbb{R}^n,\ Y\ =\ \{-1,+1\}.

Будем строить линейный пороговый классификатор:

a(x)\ =\ sign(\sum_{j=1}^n w_jx^j\ -\ w_0)\ =\ sign(<w,x>\ -\ w_0),

где x\ =\ (x^1,...,x^n) - признаковое описание объекта x; вектор w\ =\ (w^1,...,w^n)\ \in\ \mathbb{R} и скалярный порог w_0\ in\ \mathbb{R} являются параметрами алгоритма.

Уравнение <w,x>\ =\ w_0 описывает гиперплоскость, разделяющую классы в про- странстве \mathbb{R}^n.

Описание алгоритма

Понятие оптимальной разделяющей гиперплоскости

Предположим, что выборка X=\(x_i,y_i\)_{i=1}^\ell\ линейно разделима. Тогда существуют значения параметров w,\ w_0, при которых функционал числа ошибок

Q(w,w_0)\ =\ \sum_{i=1}^\ell [y_i(<w,x_i>\ -\ w_0)\ <\ 0]

принимает нулевое значение. Но тогда разделяющая гиперплоскость не единствен- на. Можно выбрать другие её положения, реализующие такое же разбиение выборки на два класса. Идея метода заключается в том, чтобы разумным образом распоря- диться этой свободой выбора.

Потребуем, чтобы разделяющая гиперплоскость максимально далеко отстояла от ближайших к ней точек обоих клас- сов. Первоначально данный принцип классификации возник из эвристических сооб- ражений: вполне естественно полагать, что максимизация зазора (margin) между классами должна способствовать более надёжной классификации.

Заметим, что параметры линейного порогового классификатора опре- делены с точностью до нормировки: алгоритм a(x) не изменится, если w и w_0 одно- временно умножить на одну и ту же положительную константу. Удобно выбрать эту константу таким образом, чтобы для всех пограничных (т. е. ближайших к разделя- ющей гиперплоскости) объектов x_i из X^\ell выполнялись условия

<w,x_i>\ -\ w_0\ =\ y_i.

Сделать это возможно, поскольку при оптимальном положении разделяющей гипер- плоскости все пограничные объекты находятся от неё на одинаковом расстоянии. Остальные объекты находятся дальше. Таким образом, для всех x_i\  \in\  X^\ell

(1)

<w,x_i> - w_0
\begin{cases} 
\le -1, & \mbox{if }y_i=-1; \\
\ge 1, & \mbox{if }y_i=+1.
\end{cases}

Условие -1\ <\ \left \Big\langle w,x \right \Big\rangle -w_0<\ 1\ задаёт полосу, разделяющую классы. Ширина полосы, как не сложно показать, равна \frac{2}{||w||}. Она максимальна, когда норма вектора w минимальна.

Линейно разделимая выборка

Построение оптимальной разделяющей гиперплоскости сводится к минимизации квадратичной формы при \ell ограничениях-неравенствах вида (1) относительно n+1 переменных w,\ w_0:

\left{<w,w>\rightarrow min\\y_i(<w,x_i>-w_0)\ge1,\qquad i=1,...,\ell\\ \right.

Используя аппарат функций Лагранжа, перейдем к решению двойственной задаче. Несложно показать эквивалентность этой задачи и следующей:

\left{-\mathcal{L}(\lambda)=-\sum\limits_{i=1}^\ell\lambda_i+\frac{1}{2}\sum\limits_{i=1}^\ell\sum\limits_{j=1}^\ell\lambda_i\lambda_jy_iy_j(<x_i,x_j>)\rightarrow \min\limits_\lambda \\ \lambda_i\ge 0\quad, i=1,...,\ell\\ \sum\limits_{i=1}^\ell\lambda_iy_i=0\quad\right.

Вектор весов будем искать в ввиде w = \sum\limits_{i=1}^l\lambda_ix_iy_i. Для определения порога w_0 достаточно взять произвольный опорный вектор x_i и выразить w_0 из равенства w_0=<w,x_i>-y_i. На практике для повышения численной устойчивости лучше взять в качестве w_0 медиану: w_0=med\{<w_i,x_i>-y_i:\ \lambda_i>0,\ i=1,...,\ell\}. Параметры полосы найдены и можно строить разделяюую полосу.

Устойчивость алгоритма SVM для линейно разделимой выборки

Предположим что дана выбрка

\{ \mathbf{x}_0 = \mathbf{0},\mathbf{x}_1 = \sigma \mathbf{e}_1,...,\mathbf{x}_m = \sigma \mathbf{e}_m\} \in \mathbb{R}^m
\{ y_0 = -1,y_1 = 1,...,y_m = 1\}

В этом случае задача SVM сводится к задаче

\frac{1}{2}\sum\limits_{i=1}^m\alpha_i^2\sigma_i^2-2\sum\limits_i\alpha_i \rightarrow min\limits_\alpha

где  \alpha_0=\sum\limits_{i=1}^m\alpha_i .


Вычислительный эксперимент

Смотри также


Данная статья является непроверенным учебным заданием.
Студент: Участник:Алексей Морозов
Преподаватель: Участник:В.В.Стрижов
Срок: 28 мая 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Личные инструменты