Шаговая регрессия (пример)
Материал из MachineLearning.
(→Литература) |
(→Исходный код) |
||
Строка 99: | Строка 99: | ||
== Исходный код == | == Исходный код == | ||
- | Скачать листинги алгоритмов можно здесь [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/ | + | Скачать листинги алгоритмов можно здесь [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Dzhamtyrova2010FeatureSelection/stepwise.m stepwise.m] |
- | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/ | + | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Dzhamtyrova2010FeatureSelection/lars.m lars.m] |
- | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/ | + | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Dzhamtyrova2010FeatureSelection/Fisher.m Fisher.m] |
+ | |||
== Смотри также == | == Смотри также == | ||
* [[Регрессионный анализ|Pегрессионный анализ]] | * [[Регрессионный анализ|Pегрессионный анализ]] |
Версия 22:34, 10 марта 2012
|
Решение практических задач восстановления регрессионной зависимости требует рассмотрения большого числа порождаемых признаков. Процедура построения регрессионных моделей состоит из двух шагов. На первом шаге, на основе свободных переменных- результатов измерений, порождается набор признаков. На втором шаге производится выбор признаков. При выборе признаков выполняется настройка параметров модели, оценивается её качество. Модель с настроенными параметрами, доставляющая минимум заданному функционалу качества, называется моделью оптимальной структуры.
Среди методов отбора признаков широкое распространение получил шаговый метод, впервые предложенный в 1960 году Эфроимсоном. На каждом шаге признаки проверяются на возможность добавления признаков в модель или удаления из модели, основываясь на F-статистике. Также могут быть использованы другие способы определения значимости признака, например, критерий Акаике, Байесовский критерий, критерий Маллоуза.
В данной статье рассматриваются два метода отбора признаков: метод наименьших углов и шаговая регрессия. Эти методы похожи. Различие заключается в том, что алгоритм LARS, вместо последовательного добавления и удаления свободных переменных, на каждом шаге изменяет их веса.
Метод наименьших углов (англ. least angle regression, LARS) - алгоритм отбора признаков в задачах линейной регрессии. При большом количестве свободных переменных возникает проблема неустойчивого оценивания весов модели. LARS предлагает метод выбора такого набора свободных переменных, который имел бы наиболее значимую статистическую связь с зависимой переменной. Также LARS предлагает метод оценки весов.
Постановка задачи
Цель шаговой регрессии состоит в отборе из большого количества предикатов небольшой подгруппы переменных, которые вносят наибольший вклад в вариацию зависимой переменной.
Пусть нам задана регрессионная модель
- ,
где - свободная переменная, - зависимая переменная, - набор параметров, - случайная аддитивная величина.
Алгоритм заключается в последовательном добавлении и удалении признаков, согласно определённому критерию. Обычно используется -критерий, который имеет вид
где индекс 2 соответствует второй регрессионной модели , индекс 1 соответствует первой регрессионной модели, которая является модификацией второй модели; - соответствующие числа параметров модели; - сумма квадратов невязок, задающий критерий качества модели:
Требуется найти набор признаков, удовлетворяющий -критерию.
Описание алгоритма
Шаговая регрессия включает два основных шага: шаг Add (последовательное добавление признаков) и шаг Del (последовательное удаление признаков).
Обозначим текущий набор признаков . Начальным набором является пустой набор . К текущему набору присоединяется по одному признаку, который дoставляет максимум -критерию или
Добавляется несколько признаков, пока значение критерия на шаге не станет меньше заданного . Затем признаки удаляются по одному так, чтобы значение -критерия было минимально:
Признаки удаляются , пока значение F-критерия на шаге не станет больше заданного критического значения .
Критические значения и для каждого шага определяются по таблице Фишера c заданным уровнем значимости со степенями свободы и .
Остановка алгоритма
Останов алгоритма производится при достижении заданного минимума критерием Маллоуза :
- ,
где - среднеквадратичная ошибка, вычисленная для модели, настроенной методом наименьших квадратов на всем множестве признаков, - сложность модели.
Критерий штрафует модели с большим количеством признаков. Минимизация критерия позволяет найти множество, состоящее из значимых признаков.
Вычислительный эксперимент
Показана работа алгоритмов в серии задач, основанных как на реальных, так и на модельных данных.
Пример на модельных данных
Рассмотрим пример на модельных данных. Сравним два алгоритма: Метод наименьших углов и Шаговую регрессию. Назначена линейная модель, выборка состоит из 20 объектов и 10 признаков. По оси абсцисс показаны номера признаков, по оси ординат- параметры, полученные при использовании Метода наименьших углов. Красным цветом обозначены признаки, выбранные при помощи Шаговой регрессии. Мы видим, что Шаговой регрессией были выбраны 6 признаков, которым алгоритмом Lars были присвоены наибольшие значения параметров .
Пример на реальных данных
Рассмотрим пример на реальных данных : данные по кредитованию одним из немецких банков . Проведем проверку алгоритма на задаче из репозитория UCI: Statlog (German Credit Data) Data Set. Объектами являются анкеты людей, желавших получить кредит в банке. Изначально анкеты содержали 20 пунктов, таких как состояние банковского счета заемщика, информация о его кредитной истории, цель займа, величина займа, возраст заемщика, время с момента трудоустройства на текущее место работы и другие. Но так как некоторые из них не были числовыми, а многие алгоритмы (в том числе рассматриваемый в данной статье) работают только с числовыми признаками, то из 20 разнородных признаков было составлено 24 числовых. В выборке представлено 256 объектов.
Нахождение модели оптимальной структуры
На графике показана зависимость критерия Маллоуза от количества признаков в модели. Из графика мы находим, что минимум критерия Маллоуза достигается при количестве признаков, равном 13. Это и есть модель оптимальной структуры.
Сравнение работы двух алгоритмов
Аналогично примеру 1, сравним два алгоритма.На графике показана зависимость параметров модели, полученные с помощью Lars, от номера признака. Красным цветом обозначены признаки, выбранные при помощи Шаговой регрессии. В отличие от первого примера на модельных данных, Шаговой регрессией были выбраны несколько признаков, которым Lars присвоил параметры, близкие к нулю. Одним из недостатков метода Шаговой регрессии является то, что важная переменная может быть никогда не включена в модель, а второстепенные признаки будут включены.
Зависимость критериев от шага алгоритмов
Сравним для двух моделей значения критерия Маллоуза, критерия Акаике и критерия SSE(сумма квадратов регрессионных остатков). Сплошной линией показаны критерии для Шаговой регрессии, пунктирной- для Метода наименьших углов.
Сравнение критерия Маллоуза для обучающей и тестовой выборки (Stepwise regression)
В качестве обучающей выборки были выбраны 200 объектов, в качестве тестовой- остальные 56.
Сравнение критерия Маллоуза для обучающей и тестовой выборки (Lars)
Исходный код
Скачать листинги алгоритмов можно здесь stepwise.m lars.m Fisher.m
Смотри также
Литература
- Крымова Е.А., Стрижов В.В. Алгоритмы выбора признаков линейных регрессионных моделей из конечного и счетного множеств.
Данная статья была создана в рамках учебного задания.
См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |