Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
м (→Фактор инфляции дисперсии (VIF)) |
м (→Литература) |
||
Строка 90: | Строка 90: | ||
* Gianfranco Galmacci, Collinearity Detection in Linear Regression. M: 1996 Kluwer Academic Publishers. | * Gianfranco Galmacci, Collinearity Detection in Linear Regression. M: 1996 Kluwer Academic Publishers. | ||
* D. A. BELSLEY, A Guide to Using the Collinearity Diagnostics. M: 1991 Kluwer Academic Publishers. | * D. A. BELSLEY, A Guide to Using the Collinearity Diagnostics. M: 1991 Kluwer Academic Publishers. | ||
- | |||
{{Задание|Сунгуров Дмитрий|В.В.Стрижов|28 мая 2010}} | {{Задание|Сунгуров Дмитрий|В.В.Стрижов|28 мая 2010}} | ||
[[Категория:Практика и вычислительные эксперименты]] | [[Категория:Практика и вычислительные эксперименты]] | ||
[[Категория:Линейная регрессия]] | [[Категория:Линейная регрессия]] |
Версия 07:35, 23 сентября 2010
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание |
Постановка задачи
Задана выборка признаков и зависимой переменной. Рассматривается линейная регрессионная модель вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию . Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров от дисперсии случайной переменной.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности. Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных. Дисперсия может быть выражена как:
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где — коэффициент детерминации j-го признака относительно остальных - фактически он содержит информацию о том, насколько точно можно построить регрессию для j-го признака относительно остальных, т.е его зависимость от них.
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение велико, то — мало, то есть близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика коллинеарности BKW основана на двух элементах, относящихся к матрице данных использующейся в линейной регрессии : индексы обусловленности(the scaled condition indexes) и дисперсионные доли(the variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы : , где и - диагональная с неотрицательными элементами называющимися сингулярными числами . Индексы обусловленности это:
,
для всех . Большое значение указывает на зависимость близкую к линейной между признаками и чем больше тем сильнее зависимость. Дисперсионные доли находятся из того факта, что используя SVD ковариационная матрица метода наименьших квадратов может записана как:
где это дисперсия возмущения . Таким образом дисперсия -го регрессионного коэффициента это -й диогональный элемент (3):
где - сингулярные значения и .
Определим -е дисперсионное соотношение как долю дисперсии -го регрессионного коэффициента связанная с -м компонентом его разложения (4). Доля считается как:
,
,
Дисперсионное соотношение:
,
Данные удобно представить в виде таблицы:
Condition index | ||||
---|---|---|---|---|
... | ||||
... | ... | |||
. | . | . | . | |
. | . | . | . | |
. | . | . | . | |
... |
Перед использованием BKW необходимо отмасштабировать матрицу . Стандартно применяется приведение столбцов к одинаковой длинне(норму). Будем рассматривать отмасштабированные индексы обусловленности :
,
Алгоритм BKW
1. Стандартизация столбцов матрицы.
2. Вычисление индексов обусловленности и дисперсионных долей.
3. Определение количества зависимостей.
Превышение индексом обусловленности выбраного заранее порога означает наличие зависимости между признаками.
Относительная сила зависимости определяется положение значения индекса обусловленности в прогресии 1, 3, 10, 30, 100, 300, 1000 итд.
4. Определение признаков участвующих в зависимости.
2 случая :
1) Только один достаточно большой индекс обусловленности - тогда возможно определение участвующих в зависимости признаков из дисперсионных долей: признак считается вовлеченным если его дисперсионная доля связанная с этим индексом превышает выбранный порог (обычно 0.25).
2) Есть несколько больших индексов обусловленности. В этом случае вовлеченность признака в зависимость определяется по сумме его дисперсионных долей отвечающих большим значениям индекса обусловленности - когда сумма превышает порог признак участвует как минимум в одной линейной зависимости.
Вычислительный эксперимент
Эксперимент проводится на модельных данных.
Исходный код
- Cкачать листинги алгоритмов можно здесь [1]
Смотри также
- Фактор инфляции дисперсии
- Мультиколлинеарность
- Метод наименьших квадратов
- Линейная регрессия (пример)
- Сингулярное разложение
Литература
- Gianfranco Galmacci, Collinearity Detection in Linear Regression. M: 1996 Kluwer Academic Publishers.
- D. A. BELSLEY, A Guide to Using the Collinearity Diagnostics. M: 1991 Kluwer Academic Publishers.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |