Анализ мультиколлинеарности (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Пример 1)
м (Пример 2)
Строка 90: Строка 90:
===Пример 2===
===Пример 2===
-
Используется неизменный признак <tex>x_1</tex> и зависящие от параметра <tex>y_1</tex>, <tex>y_2</tex>, <tex>y_3</tex>. При параметре равном 0 все признаки ортогональны, при его увеличении <tex>y_1</tex>, <tex>y_2</tex>, <tex>y_3</tex> одновременно начинают приближаться к <tex>x_1</tex> вплоть до полной коллинеарности при <tex>k=1</tex>.
+
Используется неизменный признак <tex>x_1</tex> и зависящие от параметра <tex>k</tex> признаки <tex>y_1</tex>, <tex>y_2</tex>, <tex>y_3</tex>. При <tex>k=0</tex> все признаки ортогональны, при увеличении <tex>k</tex> зависимые признаки <tex>y_1</tex>, <tex>y_2</tex>, <tex>y_3</tex> одновременно начинают приближаться к <tex>x_1</tex> вплоть до полной коллинеарности при <tex>k=1</tex>.
Зависимость VIF от параметра:<br/>
Зависимость VIF от параметра:<br/>
-
[[Изображение:plot1vif.jpg|600px]]<br/>
+
[[Изображение:plot1vif.jpg|450px]]<br/>
-
Зависимость индексов обусловленности от <tex>k</tex>:<br/>
+
Зависимость индексов обусловленности <tex>{\eta}_{i}</tex> от <tex>k</tex>:<br/>
-
[[Изображение:plot1sci.jpg|600px]]<br/>
+
[[Изображение:plot1sci.jpg|450px]]<br/>
Таблица дисперсионных долей:<br/>
Таблица дисперсионных долей:<br/>
{|
{|
|<videoflash type="youtube">mxdctxZ_j2o</videoflash>
|<videoflash type="youtube">mxdctxZ_j2o</videoflash>
|}<br/>
|}<br/>
-
Наблюдаются 3 зависимости - в самой сильной участвуют все 4 признака, во второй <tex>y_1</tex> и <tex>y_3</tex>, и в самой слабой <tex>y_1</tex> и <tex>y_1</tex>.
+
Наблюдаются три зависимости - в самой сильной зависимости участвуют все четыре признака, в следующей по силе <tex>y_1</tex> и <tex>y_3</tex>, и в самой слабой зависимости <tex>y_1</tex> и <tex>y_1</tex>.
===Пример 3===
===Пример 3===

Версия 19:49, 1 октября 2010

Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.

Содержание

Постановка задачи

Задана выборка D = \{ y_i,\mathbf{x}_i\}_{i=1}^n признаков и зависимой переменной. Рассматривается линейная регрессионная модель вида:

y_i=\sum_{j=1}^m w_j x_{ij} + \varepsilon_i, i=1,\dots,n Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию \sigma^2. Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и проверить его работу на модельных данных.

Описание алгоритма

Фактор инфляции дисперсии (VIF)

В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности. Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных. Дисперсия w_i может быть выражена как:

D\hat{w}_j=\frac{\sigma^2}{(n-1)D x_j}\frac{1}{1-R_j^2}.

Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:

VIF_j=\frac{1}{1-R_j^2},

где R_j^2коэффициент детерминации j-го признака относительно остальных - фактически он содержит информацию о том, насколько точно можно построить регрессию для j-го признака относительно остальных, т.е его зависимость от них. R_j^2 \equiv 1-{\sum_{i=1}^n (x_{ij} - \hat{x}_{ij})^2 \over \sum_{i=1}^n (x_{ij}-\bar{\mathbf{x}}_j)^2},\.

Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение VIF_j велико, то 1-R^2_j — мало, то есть R_j^2 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.

Методика Belsley, Kuh, и Welsch (BKW)

Диагностика коллинеарности BKW основана на двух элементах, относящихся к  n \times p матрице данных X использующейся в линейной регрессии  y = X \beta + \epsilon : индексы обусловленности(the scaled condition indexes) и дисперсионные доли(the variance-decomposition proportions). Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы X:  X=UD{V^{T}}, где {U}^{T}U={V}^{T}V={I}_{p} и D - диагональная с неотрицательными элементами {\mu}_{1},...,{\mu}_{p} называющимися сингулярными числами X. Индексы обусловленности это:
{\eta}_{k}\equiv\frac{{\mu}_{max}}{{\mu}_{k}}, k=1,...,p
{\eta}_{k} \geq 0 для всех k. Большое значение {\eta}_{k} указывает на зависимость близкую к линейной между признаками и чем больше {\eta}_{k} тем сильнее зависимость. Дисперсионные доли находятся из того факта, что используя SVD ковариационная матрица метода наименьших квадратов  b=(X^{T}X)^{-1}X^{T}y может записана как:

(3)

 V(b)={\sigma}^{2}(X^{T}X)^{-1} = {\sigma}^{2}V D^{-2} V^{T}
где {\sigma}^{2} это дисперсия возмущения \varepsilon. Таким образом дисперсия k-го регрессионного коэффициента {b}_{k} это k-й диогональный элемент (3):

(4)

\mbox{var}({b}_{k})={\sigma}^{2}	\sum_{j} {\frac{{\upsilon}^{2}_{kj}}{{\mu}^{2}_{j}}}
где {\mu}_{j} - сингулярные значения X и V\equiv({\upsilon}_{ij}). Определим k, j-е дисперсионное соотношение как долю дисперсии k-го регрессионного коэффициента связанная с j-м компонентом его разложения (4). Доля считается как:
{\phi}_{kj}\equiv\frac{{\upsilon}^{2}_{kj}}{{\mu}^{2}_{j}}, {\phi}_{k}\equiv\sum^{p}_{j=1} {\phi}_{kj}, k=1,...,p
Дисперсионное соотношение:
{\pi}_{jk}\equiv\frac{{\phi}_{kj}}{{\phi}_{k}}, k,j=1,...,p
Данные удобно представить в виде таблицы:

Condition index var({b}_{1}) var({b}_{2}) ... var({b}_{p})
{\eta}_{1} {\pi}_{11} {\pi}_{12} ... {\pi}_{1p}
{\eta}_{2} {\pi}_{11} ... ... {\pi}_{2p}
. . . .
. . . .
. . . .
{\eta}_{p} {\pi}_{p1} {\pi}_{11} ... {\pi}_{pp}

Перед использованием BKW необходимо отмасштабировать матрицу X. Стандартно применяется приведение столбцов к одинаковой длинне(норму). Будем рассматривать отмасштабированные индексы обусловленности \stackrel{\sim}{{\eta}_{i}}(X) :
X=[{X}_{1}\cdot\cdot\cdot{X}_{p}]<tex><br/> <tex>{s}_{i}\equiv{({X}^{T}_{i}{X}_{i})}^{-1/2}
S\equiv \mbox{diag}({s}_{1},...,{s}_{p})
\stackrel{\sim}{\eta}\equiv {\eta}_{i}(XS), i=1,...,p

Алгоритм BKW

1. Стандартизация столбцов матрицы.
2. Вычисление индексов обусловленности и дисперсионных долей.
3. Определение количества зависимостей.
Превышение индексом обусловленности выбраного заранее порога означает наличие зависимости между признаками. Относительная сила зависимости определяется положение значения индекса обусловленности в прогресии 1, 3, 10, 30, 100, 300, 1000 итд.
4. Определение признаков участвующих в зависимости. 2 случая :
1) Только один достаточно большой индекс обусловленности - тогда возможно определение участвующих в зависимости признаков из дисперсионных долей: признак считается вовлеченным если его дисперсионная доля связанная с этим индексом превышает выбранный порог {\pi}^{*} (обычно 0.25).
2) Есть несколько больших индексов обусловленности. В этом случае вовлеченность признака в зависимость определяется по сумме его дисперсионных долей отвечающих большим значениям индекса обусловленности - когда сумма превышает порог {\pi}^{*} признак участвует как минимум в одной линейной зависимости.

Вычислительный эксперимент

В эксперименте используются модельные данные, для которых вычисляется VIF и матрица Belsley в зависимоти от параметра определяющего степень коллинеарности между признаками. Зависимость VIF и индексов обусловленности показана на графиках. Остальная часть таблицы BKW раскрашивалась (от темно-синего для 0 к темно-красному для 1) и создавалось видео показывающее ее изменение при параметре от 0 до 1.

Пример 1

Используются два ортогональных признака x_1, x_2 и третий признак y_1 зависящий от параметра k. При k=0 все признаки ортогональны, при увеличении k зависимый признак y_1 приближается к x_1, вплоть до полной коллинеарности при k=1. Зависимость VIF от параметра:

Как видно из графика VIF x_1 и y_1 растет вплоть до бесконечности при k=1, VIF x_2 при этом не изменен и равен 1.
Зависимость индексов обусловленности {\eta}_{i} от k:

Таблица дисперсионных долей:


Видно что признаки x_1 и y_1 связаны усиляющейся зависимостью, и что других связей нет.

Пример 2

Используется неизменный признак x_1 и зависящие от параметра k признаки y_1, y_2, y_3. При k=0 все признаки ортогональны, при увеличении k зависимые признаки y_1, y_2, y_3 одновременно начинают приближаться к x_1 вплоть до полной коллинеарности при k=1. Зависимость VIF от параметра:

Зависимость индексов обусловленности {\eta}_{i} от k:

Таблица дисперсионных долей:


Наблюдаются три зависимости - в самой сильной зависимости участвуют все четыре признака, в следующей по силе y_1 и y_3, и в самой слабой зависимости y_1 и y_1.

Пример 3

Используется неизменные признаки x_1, x_2 и зависящие от параметра y_1,y_2,y_3. ПРи параметре равном 0 все признаки ортогональны, при его увеличении y_1, y_2 приближаются к x_1, y_3 - к x_2 вплоть до полной коллинеарности при k=1.
Зависимость VIF от параметра:

Зависимость индексов обусловленности от k:

Таблица дисперсионных долей:


Наблюдается 2 основных зависимости - между x_1, y_1, y_2 и вторая между x_2, x_3.

Исходный код

  • Cкачать листинги алгоритмов можно здесь [1]

Смотри также

Литература

  • Gianfranco Galmacci, Collinearity Detection in Linear Regression. Computational Economics 9:215-227, 1996.
  • D. A. Belsley, A Guide to Using the Collinearity Diagnostics. Computer Science in Economics and Management 4: 33-50, 1991.


Данная статья является непроверенным учебным заданием.
Студент: Участник:Сунгуров Дмитрий
Преподаватель: Участник:В.В.Стрижов
Срок: 28 мая 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Личные инструменты