Аппроксимация Лапласа (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 9: Строка 9:
Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной.
Задана выборка — множество <tex>X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\}</tex> значений свободных переменных и множество <tex>\{y_1,\ldots, y_N| y\in\R\}</tex> соответствующих им значений зависимой переменной.
 +
Необходимо для выбранной регрессионной модели <tex>f(\mathbf{w},\mathbf{x})</tex>показать зависимость среднеквадратичной ошибки от значений параметров модели: <tex>SSE=SSE(w)</tex>; построить график и сделать апроксимацию Лапласа для него; используя метрику Кульбака - Лейблера, найти расстояния между получиными зависимостями.

Версия 00:55, 16 ноября 2010

Аппроксимация Лапласа - простой, но широко используемый способ нахождения нормального (Гауссово) распределения для апроксимации заданой плотности вероятности.

Сэмплирование

Сэмплирование – процесс выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. Одно из основных приминений методов сэмплирования заключается в оценке мат. ожидания сложных вероятностных распределений: E[f]=\int f(z)p(z) dz, для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета мат. ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму E[f]\sum_{l=1}^{L} f(z^{(l)})p(z^{(l)}) dz. Существует несколько методов сэмплирования для создания подходящей выборки длинны L ???.

Постановка задачи

Задана выборка — множество X^N=\{{x}_1,\ldots,{x}_N|x\in\R^M\} значений свободных переменных и множество \{y_1,\ldots, y_N| y\in\R\} соответствующих им значений зависимой переменной. Необходимо для выбранной регрессионной модели f(\mathbf{w},\mathbf{x})показать зависимость среднеквадратичной ошибки от значений параметров модели: SSE=SSE(w); построить график и сделать апроксимацию Лапласа для него; используя метрику Кульбака - Лейблера, найти расстояния между получиными зависимостями.