Построение интегральных индикаторов по ранговым признакам (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 4: Строка 4:
== Постановка задачи ==
== Постановка задачи ==
-
Задано пространство объектов <tex>X</tex>~--- пространство объектов, <tex>{\{x_i\}}_{i=1}^{m}\subset X</tex>~---выборка объектов. Каждый объект
+
Задано пространство объектов <tex>X</tex> - пространство объектов, <tex>{\{x_i\}}_{i=1}^{m}\subset X</tex> -выборка объектов. Каждый объект
<tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>.
<tex>x\in X</tex> характеризуется набором ранговых признаков <tex>{\{f_j\}}_{j=1}^{n}</tex>.
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта]
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Integral_Indicators_Based_on_Rank_Features/doc Ссылка на текст отчёта]

Версия 17:31, 7 декабря 2010

Аннотация

В данной работе описывается подход к построению интегрального индикатора для множества объектов, характеризуемых признаками, выраженными в ранговых шкалах. В качестве интегрального индикатора предлагается рассматривать бинарное отношение на множестве объектов, позволяющее сравнивать объекты между собой. Бинарное отношение строится на основании признакового описания объектов и информации о важности каждого признака, задаваемой экспертами. Подход продемонстрирован на на работе алгоритма уточнения экспертной информации. Ключевые слова: интегральный индикатор, экспертное оценивание, ранговые шкалы, бинарные отношения.

Постановка задачи

Задано пространство объектов X - пространство объектов, {\{x_i\}}_{i=1}^{m}\subset X -выборка объектов. Каждый объект x\in X характеризуется набором ранговых признаков {\{f_j\}}_{j=1}^{n}.

Данная статья является непроверенным учебным заданием.
Студент: Александр Фирстенко
Преподаватель: В.В.Стрижов
Срок: 24 декабря 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.