Наивный байесовский классификатор
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
- | {{Main| | + | {{Main|Байесовский классификатор}} |
'''Наивный байесовский классификатор''' (naїve Bayes) — специальный частный случай [[байесовский классификатор|байесовского классификатора]], основанный на дополнительном предположении, что | '''Наивный байесовский классификатор''' (naїve Bayes) — специальный частный случай [[байесовский классификатор|байесовского классификатора]], основанный на дополнительном предположении, что | ||
объекты описываются <tex>n</tex> независимыми признаками: | объекты описываются <tex>n</tex> независимыми признаками: | ||
Строка 39: | Строка 39: | ||
== Ссылки == | == Ссылки == | ||
- | * [[ | + | * [[Машинное обучение (курс лекций, К.В.Воронцов)]] |
[[Категория:Байесовская теория классификации]] | [[Категория:Байесовская теория классификации]] |
Версия 13:45, 30 апреля 2008
Наивный байесовский классификатор (naїve Bayes) — специальный частный случай байесовского классификатора, основанный на дополнительном предположении, что объекты описываются независимыми признаками: . В этом случае функции правдоподобия классов представимы в виде , где — плотность распределения значений -го признака для класса .
Предположение о независимости существенно упрощает задачу, так как оценить одномерных плотностей гораздо легче, чем одну -мерную плотность. К сожалению, оно крайне редко выполняется на практике, отсюда и название метода.
Наивный байесовский классификатор может быть как параметрическим, так и непараметрическим, в зависимости от того, каким методом Восстановление распределения вероятностейвосстанавливаются одномерные плотности.
Основные преимущества наивного байесовского классификатора — простота реализации и низкие вычислительные затраты при обучении и классификации. В тех редких случаях, когда признаки действительно независимы (или почти независимы), наивный байесовский классификатор (почти) оптимален.
Основной его недостаток — относительно низкое качество классификации в большинстве реальных задач.
Чаще всего он используется либо как примитивный эталон для сравнения различных моделей алгоритмов, либо как элементарный строительный блок в алгоритмических композициях.
Литература
- Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
- Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974.
- Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
- Дуда Р., Харт П. Распознавание образов и анализ сцен. — М.: Мир, 1976.
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.