Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
(Новая: == Аннотация == Временным рядом называется последовательность упорядоченных по времени значений неко...) |
(→Алгоритм) |
||
Строка 28: | Строка 28: | ||
\begin{array}{l|ccccc} | \begin{array}{l|ccccc} | ||
x_{(n-1)p} & \phi^1(x_{(n-1)p-1})&\dots &\phi^u(x_{(n-1)p-1})& \ldots & \phi^u(x_{(n-1)p-(p-1)}) \\ | x_{(n-1)p} & \phi^1(x_{(n-1)p-1})&\dots &\phi^u(x_{(n-1)p-1})& \ldots & \phi^u(x_{(n-1)p-(p-1)}) \\ | ||
- | \ | + | \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ |
x_{p} & \phi^1(x_{p-1})&\dots &\phi^u(x_{p-1})& \ldots & \phi^u(x_{1}) \\ | x_{p} & \phi^1(x_{p-1})&\dots &\phi^u(x_{p-1})& \ldots & \phi^u(x_{1}) \\ | ||
\end{array} | \end{array} | ||
Строка 39: | Строка 39: | ||
</tex> | </tex> | ||
Если зафиксировать набор порождающих функций <tex>\{\phi_i\}_{i=1}^u-</tex>, то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: [[ридж-регрессия|гребневая регрессия]], [[лассо|лассо]], [[шаговая регрессия|шаговая регрессия]], метод наименьших узлов (ЛАРС). | Если зафиксировать набор порождающих функций <tex>\{\phi_i\}_{i=1}^u-</tex>, то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: [[ридж-регрессия|гребневая регрессия]], [[лассо|лассо]], [[шаговая регрессия|шаговая регрессия]], метод наименьших узлов (ЛАРС). | ||
+ | |||
== Вычислительный эксперимент == | == Вычислительный эксперимент == | ||
== Исходный код == | == Исходный код == | ||
== Смотри также == | == Смотри также == | ||
== Литература == | == Литература == |
Версия 00:01, 9 декабря 2010
Содержание |
Аннотация
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авто регрессионного прогноза заключается в нахождении модели , где вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда . Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: .
Постановка задачи
Пусть задан временной ряд . Предполагается, что отсчеты были сделаны через равные промежутки времени, и период временного ряда равен , при этом , где . Требуется спрогнозировать следующий отсчет временного ряда .
Построим матрицу .
Модель имеет вид , где , а набор порождающих функций.
Алгоритм
В терминах поставленной задачи следует решить следующую задачу оптимизации: , где Если зафиксировать набор порождающих функций , то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: гребневая регрессия, лассо, шаговая регрессия, метод наименьших узлов (ЛАРС).