Выделение периодической компоненты временного ряда (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: ==Введение== Временной ряд - последовательно измеренные через некоторые (зачастую равные) промежутки ...)
Строка 8: Строка 8:
Далее будет рассмотрена работа алгоритмов на модельных данных, а также на реальном временном ряде электрокардиограммы. Будет исследована зависимость коэффициента корреляции от различных характеристик временного ряда, а также рассмотрена возможность применения метода наименьших квадратов для прогнозирования данных.
Далее будет рассмотрена работа алгоритмов на модельных данных, а также на реальном временном ряде электрокардиограммы. Будет исследована зависимость коэффициента корреляции от различных характеристик временного ряда, а также рассмотрена возможность применения метода наименьших квадратов для прогнозирования данных.
 +
 +
==Постановка задачи==
 +
 +
 +
Дан временной ряд <tex>X_t</tex>, где <tex>n</tex> - длина временного ряда, <tex>t\in\{1,...,n\}</tex> - номер отсчета. Предполагаем, что в рассматриваемом временном ряде нет пропущенных значений, и он имеет периодические составляющие с периодом <tex>T=\{\tau_1,..\tau_p\}</tex>. Работа состоит из трех следующих ступеней.
 +
 +
<b>Во-первых</b>, тестирование на модельной задаче. Дан зашумлённый синус с известным периодом.
 +
Необходимо исследовать изменение коэффициента корреляции в следующих ситуациях:
 +
 +
'''1.''' при увеличении шума;
 +
'''2.''' при уменьшении числа отсчётов на период;
 +
'''3.''' при сокращении длины временного ряда.
 +
 +
<b>Во-вторых</b>, тестирование на реальном временном ряде. Дан временной ряд электрокардиограммы, включающий периодическую компоненту со сложным строением. Необходимо исследовать его на наличие временных периодичностей, используя алгоритмы автокорреляционной функции и МНК.
 +
 +
<b>В-третьих</b>, необходимо выяснить пригодность метода наименьших квадратов для прогнозирования временных рядов.
 +
 +
Для контроля качества алгоритма прогноза будем выделять во временном ряде <tex>l</tex> последовательных значений (контрольную выборку), которые алгоритм будет прогнозировать по предыдущим значениям. В качестве критерия качества прогноза будем минимизировать следующий функционал:
 +
<center><tex>Q = \sum\limits_{t=1}^{l}|\hat{X_t}-X_t|,</tex></center>
 +
где <tex>\hat{X_t}</tex> - прогнозируемое значение в <tex>t</tex>-ый момент времени, <tex>X_t</tex> - фактическое значение.

Версия 16:46, 21 мая 2011

Введение

Временной ряд - последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. При прогнозировании некоторых временных рядов, например временных рядов продаж, потребления энергии или электрокардиограммы, мы сталкиваемся с тем, что данные ряды обладают периодической компонентой. Существует несколько методов выявления периода. В данной работе сравниваются алгоритмы автокорреляционной функции и метода наименьших квадратов.

Автокорреляционная функция исследует временной ряд на наличие периодической компоненты, сдвигая ряд на несколько временных отсчетов и сравнивая с самим собой.

Метод наименьших квадратов(МНК) оценивает параметры для тригонометрической аппроксимации данного ряда. Так как любая последовательность, обладающая периодичностью может быть разложена в ряд Фурье, необходимо принять коэффициенты перед синусами и косинусами за коэффициенты регрессии и оценить их величину. Если найденная корреляция (коэффициент при определенном синусе или косинусе) велика, то можно заключить, что существует строгая периодичность на соответствующей частоте в данных.

Далее будет рассмотрена работа алгоритмов на модельных данных, а также на реальном временном ряде электрокардиограммы. Будет исследована зависимость коэффициента корреляции от различных характеристик временного ряда, а также рассмотрена возможность применения метода наименьших квадратов для прогнозирования данных.

Постановка задачи

Дан временной ряд X_t, где n - длина временного ряда, t\in\{1,...,n\} - номер отсчета. Предполагаем, что в рассматриваемом временном ряде нет пропущенных значений, и он имеет периодические составляющие с периодом T=\{\tau_1,..\tau_p\}. Работа состоит из трех следующих ступеней.

Во-первых, тестирование на модельной задаче. Дан зашумлённый синус с известным периодом. Необходимо исследовать изменение коэффициента корреляции в следующих ситуациях:

       1. при увеличении шума;
       2. при уменьшении числа отсчётов на период;
       3. при сокращении длины временного ряда.

Во-вторых, тестирование на реальном временном ряде. Дан временной ряд электрокардиограммы, включающий периодическую компоненту со сложным строением. Необходимо исследовать его на наличие временных периодичностей, используя алгоритмы автокорреляционной функции и МНК.

В-третьих, необходимо выяснить пригодность метода наименьших квадратов для прогнозирования временных рядов.

Для контроля качества алгоритма прогноза будем выделять во временном ряде l последовательных значений (контрольную выборку), которые алгоритм будет прогнозировать по предыдущим значениям. В качестве критерия качества прогноза будем минимизировать следующий функционал:

Q = \sum\limits_{t=1}^{l}|\hat{X_t}-X_t|,

где \hat{X_t} - прогнозируемое значение в t-ый момент времени, X_t - фактическое значение.

Личные инструменты