Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары
Материал из MachineLearning.
(Различия между версиями)
(+ время проведения спецкурса Гурова) |
(все курсы в виде шаблонов) |
||
Строка 32: | Строка 32: | ||
| | | | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА --> | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА --> | ||
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Бммо|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П. Ветров]], [[Участник:Kropotov|Д.А. Кропотов]], проходит по средам в ауд. 510, начало в 16-20. | |
- | + | |Описание = | |
- | + | В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями. | |
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]], проходит по вторникам в ауд. 607, начало в 16-20, первое занятие состоится 4 октября. | ||
+ | |Описание = | ||
+ | В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями. | ||
+ | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА --> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА --> | ||
}} | }} | ||
<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ--> | <noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ--> | ||
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[СМАИС|Структурные методы анализа изображений и сигналов]]''', [[Участник:Dmitry Vetrov|Д.П. Ветров]], [[Участник:Kropotov|Д.А. Кропотов]], читается в весеннем семестре. | |
- | + | |Описание = | |
- | + | В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями. | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В. Воронцов]]. | |
- | + | |Описание = Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения. | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Булевы уравнения и проблема SAT]]''', [[Участник:Sgur|С.И. Гуров]], [[Участник:Dj|А.Г. Дьяконов]]. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Извлечение информации из изображений (курс лекций, И.Б. Гуревич)|Извлечение информации из изображений]]''', И.Б. Гуревич. | |
- | + | |Описание = | |
- | + | В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений. | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Основы обобщенного спектрально-аналитического метода и его приложения (курс лекций, Ф.Ф. Дедус)|Основы обобщенного спектрально-аналитического метода и его приложения]]''', Ф.Ф. Дедус. | |
- | + | |Описание = | |
- | + | Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье). | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|Логический анализ данных в распознавании]]''', [[Участник:Djukova|Е.В. Дюкова]]. | |
- | + | |Описание = | |
- | + | Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач. | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Метрические методы интеллектуального анализа данных (курс лекций, А.И. Майсурадзе)|Метрические методы интеллектуального анализа данных]]''', А.И. Майсурадзе. | |
- | + | |Описание = | |
+ | Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Вычислительные задачи математической биологии (курс лекций, С.А. Махортых, А.Н. Панкратов)|Вычислительные задачи математической биологии]]''', А.Н. Панкратов. | ||
+ | |Описание = | ||
+ | В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В. Рязанов]]. | ||
+ | |Описание = | ||
+ | В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Задачи распознавания в биоинформатике (ВМК МГУ, К. В. Рудаков, И. Ю.Торшин)|Задачи распознавания в биоинформатике]]''', [[Рудаков, Константин Владимирович|К.В. Рудаков]], [[Участник:Tiy|И.Ю. Торшин]]. | ||
+ | |Описание = | ||
+ | Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|Непрерывные морфологические модели и алгоритмы]]''', [[Участник:Mest|Л.М. Местецкий]]. | ||
+ | |Описание = | ||
+ | Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов. | ||
+ | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ ОСТАЛЬНЫХ СПЕЦКУРСОВ--> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ ОСТАЛЬНЫХ СПЕЦКУРСОВ--> | ||
== Спецсеминары ==</noinclude> | == Спецсеминары ==</noinclude> | ||
Строка 75: | Строка 103: | ||
|'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]''' | |'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]''' | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА--> | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА--> | ||
- | + | {{Курс|Режим = {{{1}}}|Название = | |
+ | '''[[vetrovsem|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по средам в ауд. 510, начало в 18-10. | ||
+ | |Описание = | ||
+ | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЕ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА--> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЕ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА--> | ||
}} | }} | ||
<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦСЕМИНАРЫ--> | <noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦСЕМИНАРЫ--> | ||
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., к.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]]. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Спецсеминар "Новые методы в распознавании образов и прогнозировании"|Новые методы в распознавании образов и прогнозировании]]''', доц., к.ф.-м.н. С.И.Гуров. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Спектральные методы в задачах математической биологии]]''', проф., д.т.н. Ф.Ф.Дедус. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Алгебра над алгоритмами и эвристический поиск закономерностей]]''', доц., д.ф.-м.н [[Участник:Dj|А.Г.Дьяконов]]. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Логические модели распознавания]]''', доц., д.ф.-м.н. [[Участник:Djukova|Е.В.Дюкова]]. | |
- | + | |Описание = | |
- | + | }} | |
- | + | {{Курс|Режим = {{{1}}}|Название = | |
- | + | '''[[Алгебрологические методы в задачах классификации и прогнозирования]]''', академик РАН, д.ф.-м.н., профессор [[Журавлев, Юрий Иванович|Ю.И.Журавлёв]]. | |
- | + | |Описание = | |
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Комбинаторные основы теории информации]]''', проф., д.ф.-м.н. В.К.Леонтьев. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Анализ данных в метрических пространствах]]''', доц., к.ф.-м.н. [[Участник:AIM|А.И.Майсурадзе]]. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Вычислительные задачи математической биологии и биофизики]]''', доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Дискретно-непрерывные преобразования изображений в задачах распознавания]]''', проф., д.т.н. [[Участник:Mest|Л.М.Местецкий]]. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Спецсеминар "Прикладные методы прогнозирования и анализа данных"|Прикладные методы прогнозирования и анализа данных]]''', доц., д.ф.-м.н. [[Участник:Rvv|В.В.Рязанов]]. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Проблемно-ориентированные схемы распознавания]]''', чл.-корр. РАН, проф. [[Рудаков, Константин Владимирович|Рудаков Константин Владимирович]], доц., к.ф.-м.н. [[Участник:Yury Chekhovich|Ю.В.Чехович]]. | ||
+ | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Стохастические методы прогнозирования]]''', вед.н.с., [[Участник:A.shurygin|д.т.н. А.М.Шурыгин]]. | ||
+ | |Описание = | ||
+ | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ ВСЕХ ОСТАЛЬНЫХ СПЕЦСЕМИНАРОВ --> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ ВСЕХ ОСТАЛЬНЫХ СПЕЦСЕМИНАРОВ --> | ||
</noinclude> | </noinclude> |
Версия 22:54, 6 сентября 2011
Содержание |
Расписание спецкурсов и спецсеминаров в осеннем семестре 2011/2012 уч.г.
Пара | Понедельник | Вторник | Среда | Четверг | Пятница |
---|---|---|---|---|---|
8:45 – 10:20 | |||||
10:30 – 12:05 | |||||
12:15 – 13:50 | |||||
14:35 – 16:10 | |||||
16:20 – 17:55 | С/К ИВКЛ, С.И. Гуров, ауд. 607 | С/К БММО, Д.П. Ветров, ауд. 510 | |||
18:05 – 19:40 | С/С БММО, Д.П. Ветров, ауд. 510 |
Спецкурсы
- Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов, проходит по средам в ауд. 510, начало в 16-20.
- В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
- Исчисления высказываний классической логики, С.И. Гуров, проходит по вторникам в ауд. 607, начало в 16-20, первое занятие состоится 4 октября.
- В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
- Структурные методы анализа изображений и сигналов, Д.П. Ветров, Д.А. Кропотов, читается в весеннем семестре.
- В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
- Теория надёжности обучения по прецедентам, К.В. Воронцов.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
- Извлечение информации из изображений, И.Б. Гуревич.
- В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
- Логический анализ данных в распознавании, Е.В. Дюкова.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
- Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
- Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
- Вычислительные задачи математической биологии, А.Н. Панкратов.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
- Нестатистические методы анализа данных и классификации, В.В. Рязанов.
- В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
- Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
- Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
- Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
Спецсеминары
- Байесовские методы машинного обучения, н.с., к.ф.-м.н. Д.П.Ветров, проходит по средам в ауд. 510, начало в 18-10.
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, доц., к.ф.-м.н. К.В.Воронцов.
- Анализ и оценивание информации представленной в виде изображений, доц., к.ф.-м.н. И.Б.Гуревич.
- Новые методы в распознавании образов и прогнозировании, доц., к.ф.-м.н. С.И.Гуров.
- Спектральные методы в задачах математической биологии, проф., д.т.н. Ф.Ф.Дедус.
- Логические модели распознавания, доц., д.ф.-м.н. Е.В.Дюкова.
- Алгебрологические методы в задачах классификации и прогнозирования, академик РАН, д.ф.-м.н., профессор Ю.И.Журавлёв.
- Комбинаторные основы теории информации, проф., д.ф.-м.н. В.К.Леонтьев.
- Анализ данных в метрических пространствах, доц., к.ф.-м.н. А.И.Майсурадзе.
- Вычислительные задачи математической биологии и биофизики, доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов.
- Дискретно-непрерывные преобразования изображений в задачах распознавания, проф., д.т.н. Л.М.Местецкий.
- Прикладные методы прогнозирования и анализа данных, доц., д.ф.-м.н. В.В.Рязанов.
- Проблемно-ориентированные схемы распознавания, чл.-корр. РАН, проф. Рудаков Константин Владимирович, доц., к.ф.-м.н. Ю.В.Чехович.