Статистический отчет при создании моделей
Материал из MachineLearning.
(→Постановка задачи) |
(→Описание решения) |
||
Строка 44: | Строка 44: | ||
* корреляции и ковариации коэффициентов регрессии; | * корреляции и ковариации коэффициентов регрессии; | ||
* [[Статистика Дарбина-Уотсона|статистики Дарбина-Уотсона]]; | * [[Статистика Дарбина-Уотсона|статистики Дарбина-Уотсона]]; | ||
- | * расстояния Махаланобиса между исходной | + | * расстояния Махаланобиса между исходной и модельной зависимостями; |
* расстояния Кука (мера изменения прогноза при удалении одного объекта); | * расстояния Кука (мера изменения прогноза при удалении одного объекта); | ||
* [[Доверительный интервал|доверительных интервалов]] для предсказанных значений. | * [[Доверительный интервал|доверительных интервалов]] для предсказанных значений. |
Версия 20:08, 1 ноября 2011
|
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк и пространство ответов . Задана выборка . Обозначеним:
- матрица информации или матрица плана;
- вектор параметров;
- целевой вектор.
Будем считать, что зависимость имеет вид
,
где некоторая неслучайная функция, случайная величина, с нулевым математически ожиданием. В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:
.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, что матрица ковариации вектора ошибки имеет вид , где , получаем выражение для оценки параметров взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
- матрицы частных и получастных корреляций (условные корреляции);
- корреляции и ковариации коэффициентов регрессии;
- статистики Дарбина-Уотсона;
- расстояния Махаланобиса между исходной и модельной зависимостями;
- расстояния Кука (мера изменения прогноза при удалении одного объекта);
- доверительных интервалов для предсказанных значений.
Вычислительный эксперимент
Исходный код и полный текст работы
Смотри также
Литература
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |