Графические модели (курс лекций)/2012/Задание 5

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(дополнение)
Строка 12: Строка 12:
'''Начало выполнения задания''': 18 апреля 2012
'''Начало выполнения задания''': 18 апреля 2012
-
'''Срок сдачи''': {{ins|2 мая 2012, 23:59}}
+
'''Промежуточная сдача задания''': {{ins|2 мая 2012, 23:59}}
 +
 
 +
'''Окончательная сдача задания''': {{ins|9 мая 2012, 23:59}}
Среда реализации для всех вариантов — MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
Среда реализации для всех вариантов — MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
-
== Сегментация изображений ==
+
=== Сегментация изображений ===
В рамках данного задания рассматривается задача сегментации изображений на два класса: машина и фон.
В рамках данного задания рассматривается задача сегментации изображений на два класса: машина и фон.
-
Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов.
+
Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов: <tex> f(X) = \arg\min_Y E(X, Y, W) </tex>. Здесь X — признаки, Y — сегментация,
 +
W — параметры модели. Функция Е выглядит следующим образом: <br>
 +
<tex> E(X, Y, W) = \sum_{p \in P} ( \vec{x}_p^T \vec{w}_U) y_p + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}_P) [y_p \neq y_q] </tex>
-
Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), то ошибка сегментации определяется количеством правильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:
+
Здесь P — множество [http://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%86%D0%B8%D1%8F_(%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9) суперпикселей] (сегментов) изображения, Е — система соседства суперпикселей, вообще говоря, не являющаяся регулярной решеткой; переменные <tex>y_p</tex> — бинарные индикаторы, указывающие принадлежит ли суперпиксель объекту; <tex> \vec{x}_p </tex> — векторы унарных признаков для суперпикселей; <tex> \vec{x}_{pq} </tex> — векторы парных признаков для пар соседних суперпикселей; <tex> W = (\vec{w}_U, \vec{w}_P) </tex> — веса унарных и парных признаков.
 +
 
 +
В качестве унарных признаков обычно выбирают гистограммы по мешкам слов, построенных по каким-либо локальным дескрипторам изображений. В качестве парных признаков выбирают различных обобщенные модели Поттса; парный признак, равный константе по всем изображения, соответствует обычной модели Поттса.
 +
 
 +
Заметим, что если для всех пар соседних суперпикселей величины <tex> \vec{x}_{pq}^T \vec{w}_P </tex> неотрицательны, то энергию E можно эффективно минимизировать при помощи алгоритма построения минимального разреза графа.
 +
 
 +
Параметры модели W можно настраивать при помощи структурного метода опорных векторов (sSVM), решая оптимизационную задачу при помощи метода отсекающих плоскостей.
 +
 
 +
Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), [http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5_%D0%A5%D1%8D%D0%BC%D0%BC%D0%B8%D0%BD%D0%B3%D0%B0 расстояние Хэмминга] между произвольной и правильной сегментациями не является адекватной мерой качества сегментации. В рамках данного задания используется ошибка сегментации определяется количеством правильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:
<tex> error(Y, \hat{Y}) = \frac{\sum_p [y_p \neq 1][\hat{y}_p = 1]}{\sum_p [\hat{y}_p = 1]} + \frac{\sum_p [y_p \neq 0][\hat{y}_p = 0]}{\sum_p [\hat{y}_p = 0]}</tex>.
<tex> error(Y, \hat{Y}) = \frac{\sum_p [y_p \neq 1][\hat{y}_p = 1]}{\sum_p [\hat{y}_p = 1]} + \frac{\sum_p [y_p \neq 0][\hat{y}_p = 0]}{\sum_p [\hat{y}_p = 0]}</tex>.
Здесь Y — текущая разметка изображения, Ŷ — правильная разметка; метка фона — 0, метка объекта — 1; все суммы берутся по всем пикселям изображения.
Здесь Y — текущая разметка изображения, Ŷ — правильная разметка; метка фона — 0, метка объекта — 1; все суммы берутся по всем пикселям изображения.
 +
 +
=== Задание ===
 +
К промежуточной сдаче задания необходимо
 +
# Реализовать процедуру обучения при помощи структурного метода опорных векторов (библиотеки SVM-struct) и процедуру тестирования для задачи сегментации изображений.
 +
# Протестировать реализованные процедуры на модельных данных.
 +
# Написать отчет в формате PDF с описанием всех проведенных исследований.
 +
 +
К окончательной сдаче задания
 +
# Придумать не менее 5 парных различных парных признаков.
 +
# При помощи [[Скользящий контроль| скользящего контроля]] подобрать структурный параметр метода С и получить оценку точности алгоритма на обучающей выборке.
 +
# При помощи обученного сегментатора получить разметки тестовой выборки изображения. Привести примеры удачных и неудачных сегментаций.
 +
# Написать отчет в формате PDF с описанием всех проведенных исследований.
Для выполнения задания выдается:
Для выполнения задания выдается:
 +
# реализация алгоритма построения разреза графов, совместимая с MATLAB;
 +
# реализации структурного метода опорных векторов в библиотеке SVM-struct с интерфейсом под MATLAB: http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
# исходные изображения: обучающая и тестовая выборки;
# исходные изображения: обучающая и тестовая выборки;
-
# правильная сегментация обучающей выборки изображений;
+
# правильная сегментация изображений обучающей выборки;
-
# сегментация изображения на суперпиксели; суперпиксели подсчитаны при помощи библиотеки [http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html BSR];
+
# суперпиксели изображений обучающей и тестовой выборок, найденные при помощи библиотеки [http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html BSR];
# признаки для каждого суперпикселя; вектором признаков является гистограмма по мешку из 128 слов, построенному по [http://en.wikipedia.org/wiki/Scale-invariant_feature_transform SIFT]; признаки посчитаны при помощи библиотеки [http://www.vlfeat.org/ VLFeat].
# признаки для каждого суперпикселя; вектором признаков является гистограмма по мешку из 128 слов, построенному по [http://en.wikipedia.org/wiki/Scale-invariant_feature_transform SIFT]; признаки посчитаны при помощи библиотеки [http://www.vlfeat.org/ VLFeat].
-
 
-
Для выполнения задания настоятельно рекомендуется использовать реализации структурного метода опорных векторов в библиотеке Торстена Йохимса SVM struct с интерфейсом под MATLAB от Андреа Ведальди: http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
 
=== Описание форматов данных ===
=== Описание форматов данных ===
Строка 48: Строка 72:
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
** superpixelMap — массив типа double размера, равного размеры изображения; каждому пикселю соответствует;
** superpixelMap — массив типа double размера, равного размеры изображения; каждому пикселю соответствует;
-
** unaryFeatures — массив типа double размера количество суперпикселей на количество унарных признаков.
+
** unaryFeatures — массив типа double размером количество суперпикселей на количество унарных признаков.
-
 
+
-
=== Задание ===
+
-
* Вывести все формулы, необходимые для решения задачи.
+
-
* Реализовать процедуру обучения при помощи структурного метода опорных векторов и процедуру тестирования для задачи сегментации изображений.
+
-
* При помощи кросс-валидации подобрать структурные параметры метода и получить оценку точности алгоритма на обучающей выборке.
+
-
* При помощи обученного сегментатора получить разметки тестовой выборки изображения.
+
-
* Написать отчет в формате PDF с описанием всех проведенных исследований.
+
=== Спецификация реализуемых функций ===
=== Спецификация реализуемых функций ===

Версия 15:33, 17 апреля 2012

Задание находится в разработке.

Не приступайте к выполнению задания пока не убрано это сообщение.


Содержание

Начало выполнения задания: 18 апреля 2012

Промежуточная сдача задания: 2 мая 2012, 23:59

Окончательная сдача задания: 9 мая 2012, 23:59

Среда реализации для всех вариантов — MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.

Сегментация изображений

В рамках данного задания рассматривается задача сегментации изображений на два класса: машина и фон.

Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов:  f(X) = \arg\min_Y E(X, Y, W) . Здесь X — признаки, Y — сегментация, W — параметры модели. Функция Е выглядит следующим образом:
 E(X, Y, W) = \sum_{p \in P} ( \vec{x}_p^T \vec{w}_U) y_p + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}_P) [y_p \neq y_q]

Здесь P — множество суперпикселей (сегментов) изображения, Е — система соседства суперпикселей, вообще говоря, не являющаяся регулярной решеткой; переменные y_p — бинарные индикаторы, указывающие принадлежит ли суперпиксель объекту;  \vec{x}_p  — векторы унарных признаков для суперпикселей;  \vec{x}_{pq}  — векторы парных признаков для пар соседних суперпикселей;  W = (\vec{w}_U, \vec{w}_P) — веса унарных и парных признаков.

В качестве унарных признаков обычно выбирают гистограммы по мешкам слов, построенных по каким-либо локальным дескрипторам изображений. В качестве парных признаков выбирают различных обобщенные модели Поттса; парный признак, равный константе по всем изображения, соответствует обычной модели Поттса.

Заметим, что если для всех пар соседних суперпикселей величины  \vec{x}_{pq}^T \vec{w}_P неотрицательны, то энергию E можно эффективно минимизировать при помощи алгоритма построения минимального разреза графа.

Параметры модели W можно настраивать при помощи структурного метода опорных векторов (sSVM), решая оптимизационную задачу при помощи метода отсекающих плоскостей.

Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), расстояние Хэмминга между произвольной и правильной сегментациями не является адекватной мерой качества сегментации. В рамках данного задания используется ошибка сегментации определяется количеством правильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:

 error(Y, \hat{Y}) = \frac{\sum_p [y_p \neq 1][\hat{y}_p = 1]}{\sum_p [\hat{y}_p = 1]} + \frac{\sum_p [y_p \neq 0][\hat{y}_p = 0]}{\sum_p [\hat{y}_p = 0]}.

Здесь Y — текущая разметка изображения, Ŷ — правильная разметка; метка фона — 0, метка объекта — 1; все суммы берутся по всем пикселям изображения.

Задание

К промежуточной сдаче задания необходимо

  1. Реализовать процедуру обучения при помощи структурного метода опорных векторов (библиотеки SVM-struct) и процедуру тестирования для задачи сегментации изображений.
  2. Протестировать реализованные процедуры на модельных данных.
  3. Написать отчет в формате PDF с описанием всех проведенных исследований.

К окончательной сдаче задания

  1. Придумать не менее 5 парных различных парных признаков.
  2. При помощи скользящего контроля подобрать структурный параметр метода С и получить оценку точности алгоритма на обучающей выборке.
  3. При помощи обученного сегментатора получить разметки тестовой выборки изображения. Привести примеры удачных и неудачных сегментаций.
  4. Написать отчет в формате PDF с описанием всех проведенных исследований.

Для выполнения задания выдается:

  1. реализация алгоритма построения разреза графов, совместимая с MATLAB;
  2. реализации структурного метода опорных векторов в библиотеке SVM-struct с интерфейсом под MATLAB: http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
  3. исходные изображения: обучающая и тестовая выборки;
  4. правильная сегментация изображений обучающей выборки;
  5. суперпиксели изображений обучающей и тестовой выборок, найденные при помощи библиотеки BSR;
  6. признаки для каждого суперпикселя; вектором признаков является гистограмма по мешку из 128 слов, построенному по SIFT; признаки посчитаны при помощи библиотеки VLFeat.

Описание форматов данных

Названия файлов, относящихся к каждому объекту обучающей выборке, начинаются с названия объекта: imgTrain_{номер файла}. Для каждого объекта выданы следующие файлы:

  • само изображение: imgTrain_XXX.png
  • правильная разметка изображения: imgTrain_XXX_groundtruth.png
  • mat-файлы, содержащие признаки и суперпиксели для изображения: imgTrain_XXX_data.mat. В каждом файле присутствуют следующие переменные:
    • superpixelMap — массив типа double размера, равного размеры изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
    • unaryFeatures — массив типа double размером количество суперпикселей на количество унарных признаков.

Названия файлов, относящихся к каждому объекту обучающей выборке, начинаются с названия объекта: imgTrain_{номер файла}. Для каждого объекта выданы следующие файлы:

  • само изображение: imgTest_XXX.png
  • mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
    • superpixelMap — массив типа double размера, равного размеры изображения; каждому пикселю соответствует;
    • unaryFeatures — массив типа double размером количество суперпикселей на количество унарных признаков.

Спецификация реализуемых функций

Обучение
[model, time] = train_sSVM(X, Y, options)
ВХОД
X — обучающая выборка, массив типа cell размера N x 1, где N - размер обучающей выборки; каждая элемент содержит путь к файлу XXX_data.png для соответствующего изображения;
Y — ответы на обучающей выборки, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
options — набор параметров метода, структура с полями:
   'С' — параметр C структурного метода опорных векторов
   'eps' — порог для добавления ограничений в рамках метода отсекающих плоскостей
ВЫХОД
model — модель, обученная при помощи вашего метода;
time — время работы алгоритма;


Предсказание
Y = predict_sSVM(X, model)
ВХОД
X — выборка, массив типа cell размера N x 1, где N - размер обучающей выборки; каждая элемент содержит путь к файлу XXX_data.png для соответствующего изображения;
model — модель, полученная при помощи процедуры train_sSVM;
ВЫХОД
Y — ответы на выборке X, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;


Обучение и предсказание для базы с машинами
[train_error, test_Y] = cars()
ВЫХОД
train_error — ошибка на обучающей выборке;
test_Y — ответы на тестовой выборке, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;

В каталоге, из которого будет запускаться решение при проверке, будет лежать выданный каталог datasets.

Рекомендации по выполнению задания

Данные для выполнения задания

Оформление задания

Выполненный вариант задания необходимо прислать письмом по адресу bayesml@gmail.com с темой «Задание 5. ФИО». Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Новые версии будут рассматриваться только в самом крайнем случае. Также убедительная просьба строго придерживаться заданной выше спецификации реализуемых функций. Очень трудно проверять большое количество заданий, если у каждого будет свой формат реализации.

Письмо должно содержать:

  • PDF-файл с описанием проведенных исследований (отчет должен включать в себя описание выполнения каждого пункта задания с приведением соответствующих графиков, изображений, чисел)
  • train_sSVM.m, predict_sSVM.m, cars.m
  • разметку тестовой выборки в таком же формате, как выдана разметка обучающей выборки
  • Набор вспомогательных файлов при необходимости
Личные инструменты