Участник:Aleksandra.Tokmakova
Материал из MachineLearning.
(Новая: '''МФТИ, ФУПМ''' Кафедра "'''Интеллектуальные системы'''" Направление "'''Интеллектуальный анализ данных'''" ...) |
(→Отчет о научно-исследовательской работе за 8 семестр) |
||
Строка 6: | Строка 6: | ||
'''Название''' | '''Название''' | ||
+ | |||
Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков | Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков | ||
'''Аннотация''' | '''Аннотация''' | ||
+ | |||
Рассматривается задача выбора регрессионной модели. Предполагается, что вектор параметров модели − многомерная случайная величина с независимо распределёнными компонентами. В работе предложен способ оптимизации праметров и гиперпараметров. Приведены явные оценки гиперпараметров для случая линейных и нелинейных моделей. Показано как полученные оценки используются для отбора признаков. Предложенный подход сравнивается с подходом, использующим для лценки гиперпараметров аппроксимацию Лапласа. | Рассматривается задача выбора регрессионной модели. Предполагается, что вектор параметров модели − многомерная случайная величина с независимо распределёнными компонентами. В работе предложен способ оптимизации праметров и гиперпараметров. Приведены явные оценки гиперпараметров для случая линейных и нелинейных моделей. Показано как полученные оценки используются для отбора признаков. Предложенный подход сравнивается с подходом, использующим для лценки гиперпараметров аппроксимацию Лапласа. | ||
Ключевые слова: регрессия, выбор признаков, распределение параметров, оценка гипертараметров, байесовский вывод. | Ключевые слова: регрессия, выбор признаков, распределение параметров, оценка гипертараметров, байесовский вывод. | ||
'''Список публикаций''' | '''Список публикаций''' | ||
+ | |||
Подготовлена и подана статья в журнал <<Информационные технологии>> ISSN 1684-6400 (из списка ВАК) «Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков» | Подготовлена и подана статья в журнал <<Информационные технологии>> ISSN 1684-6400 (из списка ВАК) «Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков» | ||
'''Доклады на научных конференциях''' | '''Доклады на научных конференциях''' | ||
+ | |||
2012, апрель. Участие в XIX Международной конференции студентов, аспирантов и молодых ученых «Ломоносов» с работой «Оценка ковариационных матриц параметров модели при восстановлении линейной регрессии» | 2012, апрель. Участие в XIX Международной конференции студентов, аспирантов и молодых ученых «Ломоносов» с работой «Оценка ковариационных матриц параметров модели при восстановлении линейной регрессии» | ||
'''Гранты''' | '''Гранты''' | ||
+ | |||
ПГАС | ПГАС |
Версия 10:39, 29 мая 2012
МФТИ, ФУПМ Кафедра "Интеллектуальные системы" Направление "Интеллектуальный анализ данных"
Отчет о научно-исследовательской работе за 8 семестр
Название
Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков
Аннотация
Рассматривается задача выбора регрессионной модели. Предполагается, что вектор параметров модели − многомерная случайная величина с независимо распределёнными компонентами. В работе предложен способ оптимизации праметров и гиперпараметров. Приведены явные оценки гиперпараметров для случая линейных и нелинейных моделей. Показано как полученные оценки используются для отбора признаков. Предложенный подход сравнивается с подходом, использующим для лценки гиперпараметров аппроксимацию Лапласа. Ключевые слова: регрессия, выбор признаков, распределение параметров, оценка гипертараметров, байесовский вывод.
Список публикаций
Подготовлена и подана статья в журнал <<Информационные технологии>> ISSN 1684-6400 (из списка ВАК) «Оценка гиперпараметров линейных регрессионных моделей методом максимального правдоподобия при отборе шумовых и коррелирующих признаков»
Доклады на научных конференциях
2012, апрель. Участие в XIX Международной конференции студентов, аспирантов и молодых ученых «Ломоносов» с работой «Оценка ковариационных матриц параметров модели при восстановлении линейной регрессии»
Гранты
ПГАС