Обсуждение участника:Agor153
Материал из MachineLearning.
м |
м |
||
Строка 1: | Строка 1: | ||
== Категория "Метод главных компонент" == | == Категория "Метод главных компонент" == | ||
- | Уважаемый [[участник:Agor153|Agor153]], статья [[Метод главных компонент]] получается довольно большой, неудобно читать и сложно хранить. Предлагаю использовать категорию [[Категория:Метод главных компонент|Метод главных компонент]] и разбить статью на несколько частей, каждая из которых будет статьей. Надеюсь, это будет удобно. --[[Участник:Strijov|Strijov]] 17:32, 2 июля 2008 (MSD) | + | Уважаемый [[участник:Agor153|Agor153]], статья [[Метод главных компонент]] получается довольно большой, неудобно читать и сложно хранить. Предлагаю использовать категорию [[:Категория:Метод главных компонент|Метод главных компонент]] и разбить статью на несколько частей, каждая из которых будет статьей. Надеюсь, это будет удобно. --[[Участник:Strijov|Strijov]] 17:32, 2 июля 2008 (MSD) |
{{MediaWiki:NewUserMessage|Agor153}} | {{MediaWiki:NewUserMessage|Agor153}} |
Версия 13:43, 2 июля 2008
Содержание |
Категория "Метод главных компонент"
Уважаемый Agor153, статья Метод главных компонент получается довольно большой, неудобно читать и сложно хранить. Предлагаю использовать категорию Метод главных компонент и разбить статью на несколько частей, каждая из которых будет статьей. Надеюсь, это будет удобно. --Strijov 17:32, 2 июля 2008 (MSD)
Agor153, поздравляем с успешной регистрацией на MachineLearning.ru
Перед началом работы рекомендуем ознакомиться с двумя основными документами:
- Концепция Ресурса — короткий документ, в котором объясняется, чем наш Ресурс отличается от Википедии, как его можно использовать для совместной научной и учебной работы, и каким он должен стать в перспективе;
- Инструктаж — длинный документ, в котором мы постарались собрать все сведения, необходимые для работы с Ресурсом, включая правила вики-разметки и сведения об основных категориях Ресурса.
Ссылки на эти и другие справочные материалы собраны на странице Справка.
В нашем сообществе принято представляться. Поэтому, прежде чем приступить к созданию или редактированию страниц, заполните, пожалуйста, свою страницу участника. Сделать это очень просто — достаточно кликнуть на Ваше имя Участника (оно показывается в самой верхней строке на любой странице Ресурса). Желательно, чтобы кроме обычных формальностей (фамилии, имени, отчества, места работы или учёбы, степени, звания, и т.д.) Вы указали свои научные интересы. Удобнее всего сделать это в виде списка ссылок на интересные Вам статьи или категории нашего Ресурса. Не беда, если некоторые из них окажутся «красными ссылками» — это означает, что таких статей пока нет, и у Вас есть шанс их написать. Кстати, вики-движок собирает все «красные ссылки» в список требуемых статей — в него тоже стоит заглянуть. Для создания новой статьи достаточно кликнуть по «красной ссылке» или набрать её название в строке поиска.
По любым вопросам, связанным с работой нашего Ресурса, обращайтесь к Администраторам (см. список администраторов).
С уважением,
ваш M.L.Ru
Перенёс сюда старую версию Метод главных компонент для удобства дальнейшей работы
Метод главных компонент способ снижения размерности пространства данных. Он заключается в нахождении линейного ортогонального преобразования исходной матрицы данных в пространство меньшей размерности. При этом выбираются такая ортогональная система координат, которая обеспечивает наименьшую потерю информации в исходных данных. Последнее подразуменает минимальную среднеквадратичную ошибку при проекции данных в пространство заданной размерности.
Определение метода главных компонент
Одной из задач аппроксимации является задача приближения множества векторов-строк матрицы их проекциями на некоторую новую ортогональную систему координат. Эта система отыскивается на множестве преобразований вращений начальной системы координат. При этом множество аппроксимируемых векторов , , отображается в новое множество векторов , где . Оператором отображения
является ортонормальная матрица , то есть единичная матрица. Столбцы называются главными компонентами матрицы . Матрица строится таким образом, что среднеквадратическая разность между векторами и проекцией этих векторов на ортогональную систему координат, заданных минимальна. Наиболее удобным способом получения матрицы является сингулярное разложение матрицы :
Метод главных компонент позволяет с помощью первых главных компонент можно восстановить исходную матрицу с минимальной ошибкой. Критерий минимального значения суммы квадратов расстояния от векторов-столбцов матрицы данных до их проекций на первую главную компоненту называется критерием наибольшей информативности C.Р. Рао. Кроме того, матрица выполняет декоррелирующее преобразование, называемое также преобразованием Карунена-Лоэва. В результате этого преобразования исчезает возможная корреляция между векторами-столбцами исходной матрицы .
Рао было показано, что строки матрицы есть собственные векторы ковариационной матрицыгде матрица центрирована из каждого ее столбца вычтено среднее значение по этому столбцу.
Понятие наибольшей информативности
Рассмотрим -мерную случайную величину с ковариационной матрицей . Обозначим соответствующие собственные числа и собственные векторы матрицы . Заметим, что собственные числа и элементы собственных векторов матрицы всегда действительны. Тогда по теореме о собственных числах
Случайная величина называется -й главной компонентой случайной величины . Матрица вращения составлена из векторов-столбцов . Матрица главных компонент имеет следующие свойства.
Смотри также
Литература
- Рао С.Р. Линейные статистические методы и их применения. М.: Наука. 1968. С. 530-533.
- Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности. М.: Финансы и статистика. 1989.
- Jolliffe I.T. Principal Component Analysis, Springer Series in Statistics. Springer. 2002.
- Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine 2 (6): 559–572. [1]