Методы оптимизации в машинном обучении (курс лекций)
Материал из MachineLearning.
(→Литература) |
(начало редактирования страницы 2014 года) |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | |||
+ | {{stop|Страница курса находится в стадии разработки. Архив 2012 года находится [[Методы оптимизации в машинном обучении (курс лекций)/2012|здесь]].}} | ||
{| | {| | ||
Строка 8: | Строка 10: | ||
|} | |} | ||
- | Автор курса: [[Участник:Kropotov|Д.А. Кропотов]]. Вопросы и комментарии по курсу просьба | + | Автор курса: [[Участник:Kropotov|Д.А. Кропотов]]. Вопросы и комментарии по курсу просьба адресовать письмом на ''bayesml@gmail.com''. В название письма просьба добавлять [МОМО14]. |
- | == Расписание на | + | == Расписание на 2014 учебный год == |
- | В осеннем семестре | + | В осеннем семестре 2014 года спецкурс читается на [[ВМиК МГУ|ВМК]] по ??? в ауд. ???, начало в ???. |
{| class = "standard" | {| class = "standard" | ||
Строка 19: | Строка 21: | ||
! width="30%" | Материалы | ! width="30%" | Материалы | ||
|- | |- | ||
- | | | + | | ?? сентября 2014 |
| Введение в курс || | | Введение в курс || | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
|- | |- | ||
|} | |} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
== Система выставления оценок за курс == | == Система выставления оценок за курс == | ||
Строка 144: | Строка 61: | ||
* Метод сопряженных градиентов для оптимизации неквадратичных функций, зависимость от точной одномерной оптимизации; | * Метод сопряженных градиентов для оптимизации неквадратичных функций, зависимость от точной одномерной оптимизации; | ||
* Квази-ньютоновские методы оптимизации: DFP, BFGS и L-BFGS; | * Квази-ньютоновские методы оптимизации: DFP, BFGS и L-BFGS; | ||
- | |||
=== Методы оптимизации с использованием глобальных верхних оценок, зависящих от параметра === | === Методы оптимизации с использованием глобальных верхних оценок, зависящих от параметра === | ||
Строка 203: | Строка 119: | ||
== Литература == | == Литература == | ||
# [http://www.ebook3000.com/Programming/General/Optimization-for-Machine-Learning_151684.html Optimization for Machine Learning]. Edited by Suvrit Sra, Sebastian Nowozin and Stephen J. Wright, MIT Press, 2011. | # [http://www.ebook3000.com/Programming/General/Optimization-for-Machine-Learning_151684.html Optimization for Machine Learning]. Edited by Suvrit Sra, Sebastian Nowozin and Stephen J. Wright, MIT Press, 2011. | ||
+ | # J. Nocedal, S.J. Wright. [http://www.twirpx.com/file/724235/ Numerical Optimization]. Springer, 2006. | ||
# S. Boyd, L. Vandenberghe. [http://www.stanford.edu/~boyd/cvxbook/ Convex Optimization], Cambridge University Press, 2004. | # S. Boyd, L. Vandenberghe. [http://www.stanford.edu/~boyd/cvxbook/ Convex Optimization], Cambridge University Press, 2004. | ||
# A. Antoniou, W.-S. Lu. [http://www.twirpx.com/file/602599/ Practical Optimization: Algorithms and Engineering Applications], Springer, 2007. | # A. Antoniou, W.-S. Lu. [http://www.twirpx.com/file/602599/ Practical Optimization: Algorithms and Engineering Applications], Springer, 2007. | ||
Строка 208: | Строка 125: | ||
# Ю. Нестеров. [http://premolab.ru/sites/default/files/nesterovfinal.pdf Методы выпуклой оптимизации], МЦМНО, 2010. | # Ю. Нестеров. [http://premolab.ru/sites/default/files/nesterovfinal.pdf Методы выпуклой оптимизации], МЦМНО, 2010. | ||
# R. Fletcher. [http://www.twirpx.com/file/515359/ Practical Methods of Optimization], Wiley, 2000. | # R. Fletcher. [http://www.twirpx.com/file/515359/ Practical Methods of Optimization], Wiley, 2000. | ||
- | # [http:// | + | # [http://www.twirpx.com/file/1442975/ Numerical Recipes. The Art of Scientific Computing], Cambridge University Press, 2007. |
+ | |||
+ | == Архив == | ||
+ | [[Методы оптимизации в машинном обучении (курс лекций)/2012|2012 год]] | ||
== См. также == | == См. также == |
Версия 15:24, 21 августа 2014
Страница курса находится в стадии разработки. Архив 2012 года находится здесь. |
Автор курса: Д.А. Кропотов. Вопросы и комментарии по курсу просьба адресовать письмом на bayesml@gmail.com. В название письма просьба добавлять [МОМО14].
Расписание на 2014 учебный год
В осеннем семестре 2014 года спецкурс читается на ВМК по ??? в ауд. ???, начало в ???.
Дата | Название лекции | Материалы |
---|---|---|
?? сентября 2014 | Введение в курс |
Система выставления оценок за курс
В рамках курса предполагается три практических задания и экзамен. Каждое задание и экзамен оцениваются по пятибалльной шкале. Итоговая оценка за курс получается путем взвешенного суммирования оценок за задания и экзамен с дальнейшим округлением в сторону ближайшего целого. Вес каждого задания составляет 1/3. Таким образом, если студент успешно выполнил все три практических задания, то он получает оценку за курс без экзамена. Минимально студент должен выполнить одно практические задание. В этом случае он сдает экзамен, оценка за который идет в итоговую сумму с весом 2/3. Если студент выполнил два практических задания, то он также сдает экзамен, но по облегченной схеме (меньше вопросов в билете, меньше дополнительных вопросов). В этом случае оценка за экзамен идет в итоговую сумму с весом 1/3. За каждый день просрочки при сдаче задания начисляется штраф в 0.1 балла, но не более 2 баллов.
Программа курса
Основные понятия и примеры задач
- Градиент и гессиан функции многих переменных, их свойства, необходимые и достаточные условия безусловного экстремума;
- Матричные вычисления, примеры;
- Матричные разложения, их использование для решения СЛАУ;
- Структура итерационного процесса в оптимизации, понятие оракула;
- Примеры оракулов и задач машинного обучения со «сложной» оптимизацией.
Методы одномерной оптимизации
- Минимизация функции без производной: метод золотого сечения, метод парабол;
- Гибридный метод минимизации Брента;
- Методы решения уравнения : метод деления отрезка пополам, метод секущей;
- Минимизация функции с известной производной: кубическая аппроксимация и модифицированный метод Брента;
- Поиск ограничивающего сегмента;
- Условия Голдштайна-Деккера-Флетчера для неточного решения задачи одномерной оптимизации;
- Неточные методы одномерной оптимизации, backtracking.
Методы многомерной оптимизации
- Метод покоординатного спуска;
- Методы градиентного спуска: наискорейший спуск, спуск с неточной одномерной оптимизацией, зависимость от шкалы измерений признаков;
- Метод Ньютона, подбор длины шага;
- Теоретические результаты относительно скорости сходимости градиентного спуска и метода Ньютона;
- Фазы итерационного процесса, LDL-разложение, гибридный метод Ньютона;
- Метод Levenberg-Marquardt, его использование для обучения нелинейной регрессии;
- Метод сопряженных градиентов для решения систем линейных уравнений;
- Метод сопряженных градиентов для оптимизации неквадратичных функций, зависимость от точной одномерной оптимизации;
- Квази-ньютоновские методы оптимизации: DFP, BFGS и L-BFGS;
Методы оптимизации с использованием глобальных верхних оценок, зависящих от параметра
- Вероятностная модель линейной регрессии с различными регуляризациями: квадратичной, L1, Стьюдента;
- Идея метода оптимизации, основанного на использовании глобальных оценок, сходимость;
- Пример применения метода для обучения LASSO;
- Построение глобальных оценок с помощью неравенства Йенсена, ЕМ-алгоритм, его применение для вероятностных моделей линейной регрессии;
- Построение оценок с помощью касательных и замены переменной;
- Оценка Jakkola-Jordan для логистической функции, оценки для распределений Лапласа и Стьюдента;
- Применение оценок для обучения вероятностных моделей линейной регрессии;
- Выпукло-вогнутая процедура, примеры использования.
Задачи оптимизации с ограничениями, понятие двойственности
- Векторные и матричные нормы, примеры, двойственная норма;
- Выпуклые множества и функции, сопряженная функция Фенхеля, понятие двойственности;
- Двойственная функция Лагранжа, ее связь с сопряженной функцией Фенхеля, двойственная задача оптимизации;
- Геометрическая интерпретация двойственности;
- Необходимые и достаточные условия оптимальности в задачах условной оптимизации, теорема Куна-Таккера;
- Возмущенная задача оптимизации, экономический смысл коэффициентов Лагранжа.
Методы внутренней точки
- Условия Куна-Таккера для выпуклых задач оптимизации, общая структура прямо-двойственных методов оптимизации;
- Решение задач условной оптимизации с линейными ограничениями вида равенство, метод Ньютона;
- Прямо-двойственный метод Ньютона;
- Метод логарифмических барьерных функций, поиск допустимой стартовой точки;
- Прямо-двойственный метод внутренней точки;
- Использование методов внутренней точки для обучения SVM.
Разреженные методы машинного обучения
- Модели линейной/логистической регрессии с регуляризациями L1 и L1/L2;
- Понятие субградиента выпуклой функции, необходимое и достаточное условие экстремума для выпуклых негладких задач безусловной оптимизации, примеры;
- Проксимальный метод;
- Метод покоординатного спуска и блочной покоординатной оптимизации;
- Метод active set на примере регрессии наименьших углов.
Методы отсекающих плоскостей
- Понятие отделяющего оракула, базовый метод отсекающих плоскостей (cutting plane);
- Надграфная форма метода отсекающих плоскостей;
- Bundle-версия метода отсекающих плоскостей, зависимость от настраиваемых параметров;
- Применение bundle-метода для задачи обучения SVM;
- Добавление эффективной процедуры одномерного поиска;
- Реализация метода с использованием параллельных вычислений и в условиях ограничений по памяти.
Стохастическая оптимизация
- Общая постановка задачи стохастической оптимизации, пример использования;
- Задачи минимизации среднего и эмпирического риска;
- Метод стохастического градиентного спуска, его отличия от метода градиентного спуска;
- Стохастический градиентный спуск как метод оптимизации и как метод обучения;
- Применение стохастического градиентного спуска для SVM (алгоритм PEGASOS);
- Модели автокодировщика и глубинного автокодировщика, особенности процедуры обучения и использование стохастического градиентного спуска.
Литература
- Optimization for Machine Learning. Edited by Suvrit Sra, Sebastian Nowozin and Stephen J. Wright, MIT Press, 2011.
- J. Nocedal, S.J. Wright. Numerical Optimization. Springer, 2006.
- S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
- A. Antoniou, W.-S. Lu. Practical Optimization: Algorithms and Engineering Applications, Springer, 2007.
- Б. Поляк. Введение в оптимизацию, Наука, 1983.
- Ю. Нестеров. Методы выпуклой оптимизации, МЦМНО, 2010.
- R. Fletcher. Practical Methods of Optimization, Wiley, 2000.
- Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, 2007.
Архив
См. также
Курс «Байесовские методы в машинном обучении»