Графические модели (курс лекций)
Материал из MachineLearning.
(→Оценки по курсу) |
(→Система выставления оценок по курсу) |
||
Строка 132: | Строка 132: | ||
# При наличии несданных заданий максимальная возможная оценка за курс — это «удовлетворительно». | # При наличии несданных заданий максимальная возможная оценка за курс — это «удовлетворительно». | ||
- | # Необходимым условием получения положительной оценки за курс является сдача устного экзамена не менее чем на оценку «удовлетворительно». | + | # Необходимым условием получения положительной оценки за курс является сдача не менее двух практических заданий и сдача устного экзамена не менее чем на оценку «удовлетворительно». |
- | # Итоговая оценка вычисляется по формуле <tex>Mark = \frac{Oral* | + | # Итоговая оценка вычисляется по формуле <tex>Mark = \frac{Oral*4+HomeWork}{8}</tex>, где Oral — оценка за устный экзамен (0, 3, 4, 5), HomeWork — баллы, набранные за практические задания (см. таблицу выше), Mark — итоговая оценка по 5-балльной шкале. Нецелые значения округляются в сторону ближайшего целого, <b>превосходящего</b> дробное значение. Максимальный балл за HomeWork равен 20. |
# На экзамене студент может отказаться от оценки и пойти на пересдачу, на которой может заново получить Oral. | # На экзамене студент может отказаться от оценки и пойти на пересдачу, на которой может заново получить Oral. | ||
# За каждое несданное задание выставляется минус 10 баллов в баллы по заданиям (допускаются отрицательные значения). | # За каждое несданное задание выставляется минус 10 баллов в баллы по заданиям (допускаются отрицательные значения). |
Версия 14:00, 30 января 2014
Страница курса находится в стадии формирования. |
Курс посвящен математическим методам обработки информации, основанных на использовании внутренних взаимосвязей в данных и их последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ социальных сетей, распознавание речи, машинное обучение. До 2011 года курс читался как спецкурс «Структурные методы анализа изображений и сигналов».
Целью курса является освоение математического аппарата для работы с графическими моделями. Предполагается, что в результате прохождения курса студенты обретут навыки самостоятельного построения графических моделей для решения задач из различных прикладных областей; будут способны решать задачи настройки параметров графических моделей по данным, определять подходящую структуру графической модели, выбирать методы, наиболее эффективные для работы с построенной моделью; получат опыт применения графических моделей для различных задач анализа изображений, сигналов, сетей. |
Лектор: Д.П. Ветров,
Семинарист: А.А. Осокин,
Ассистент: Д.А. Кропотов.
Вопросы и комментарии по курсу можно оставлять на вкладке «Обсуждение» к этой странице или направлять письмом по адресу bayesml@gmail.com. При этом в название письма просьба добавлять [ГМ14].
Расписание занятий
В 2014 году курс читается на факультете ВМиК МГУ ...
Дата | Занятие | Материалы |
---|---|---|
8 февраля 2013 | Лекция 1 «Введение в курс. Байесовские рассуждения.» | Презентация (pdf) по байесовским рассуждениям и графическим моделям |
15 февраля 2013 | Семинар 1 «Правила работы с вероятностями, байесовские рассуждения.» | |
15 февраля 2013 | Лекция 2 «Графические модели: байесовские и марковские сети» | |
22 февраля 2013 | Семинар 2 «Фактор-графы, задачи вывода в ГМ, решение практических задач с помощью ГМ» | Презентация (pdf) |
22 февраля 2013 | Лекция 3 «Алгоритм Belief Propagation (BP) для вывода в ациклических графических моделях. Алгоритм Loopy BP.» | Конспект по алгоритмам передачи сообщений (pdf) |
1 марта 2013 | Семинар 3 «Алгоритмы передачи сообщений. Коды с малой плотностью проверок на чётность (LDPC-коды)» | LDPC-коды в Википедии |
1 марта 2013 | Лекция 4 «Скрытые марковские модели. Алгоритм сегментации сигнала, обучение с учителем.» | Презентация (pdf) |
15 марта 2013 | Семинар 4 «Скрытые марковские модели» | |
15 марта 2013 | Лекция 5 «ЕМ-алгоритм. Обучение скрытых марковских моделей без учителя.» | Презентация (pdf) |
22 марта 2013 | Семинар 5 «Матричные вычисления» | Конспект по матричным вычислениям и нормальному распределению (pdf) |
22 марта 2013 | Лекция 6 «Линейные динамические системы. Фильтр Калмана. Расширенный фильтр Калмана.» | Конспект по ЛДС (pdf) |
29 марта 2013 | Семинар 6 «Контрольная по матричным вычислениям. ЕМ-алгоритм» | |
29 марта 2013 | Лекция 7 «Алгоритмы на основе разрезов графов, -расширение.» | Презентация (pdf), Конспект по разрезам графов (pdf) |
5 апреля 2013 | Семинар 7 «Алгоритмы разрезов графов» | |
5 апреля 2013 | Лекция 8 «Алгоритм Tree-ReWeighted Message Passing (TRW) для вывода в циклических графических моделях» | Конспект по TRW (pdf) |
12 апреля 2013 | Семинар 8 «Двойственное разложение» | |
12 апреля 2013 | Лекция 9 «Структурный метод опорных векторов (SSVM)» | Конспект по SSVM (pdf) |
19 апреля 2013 | Семинар 9 «Разбор практического задания по SSVM» | |
19 апреля 2013 | Лекция 10 «Методы Монте Карло по схеме марковских цепей (MCMC)» | Конспект по MCMC (pdf) |
26 апреля 2013 | Лекция 11 «Вариационный вывод» | Конспект по вариационному выводу (pdf) |
26 апреля 2013 | Семинар 10 «Методы MCMC и вариационный вывод» | |
17 мая 2013 | Семинар 11 «Контрольная по вариационному выводу» | |
17 мая 2013 | Лекция 12 «Байесовский подход для выбора графической модели» |
Практические задания
Задание 1. «Байесовские рассуждения».
Задание 2. «Алгоритм Loopy Belief Propagation для LDPC-кодов».
Задание 3. «Алгоритмы минимизации энергии для задачи стерео».
Задание 4. «Модель Изинга».
Оценки по курсу
№ п/п | Студент | Практические задания | Сумма | Экзамен | Оценка | |||
---|---|---|---|---|---|---|---|---|
№1 | №2 | №3 | №4 | |||||
1 | Алешин Илья | |||||||
2 | Антипов Алексей | |||||||
3 | Арбузова Дарья | |||||||
4 | Горелов Алексей | |||||||
5 | Зиннурова Эльвира (C) | |||||||
6 | Ломов Никита | |||||||
7 | Львов Сергей | |||||||
8 | Найдин Олег | |||||||
9 | Никифоров Андрей | |||||||
10 | Новиков Александр | |||||||
11 | Петров Григорий | |||||||
12 | Подоприхин Дмитрий | |||||||
13 | Рыжков Александр | |||||||
14 | Сокурский Юрий | |||||||
15 | Ульянов Дмитрий | |||||||
16 | Харациди Олег | |||||||
17 | Шабашев Федор | |||||||
18 | Шадриков Андрей |
Система выставления оценок по курсу
- При наличии несданных заданий максимальная возможная оценка за курс — это «удовлетворительно».
- Необходимым условием получения положительной оценки за курс является сдача не менее двух практических заданий и сдача устного экзамена не менее чем на оценку «удовлетворительно».
- Итоговая оценка вычисляется по формуле , где Oral — оценка за устный экзамен (0, 3, 4, 5), HomeWork — баллы, набранные за практические задания (см. таблицу выше), Mark — итоговая оценка по 5-балльной шкале. Нецелые значения округляются в сторону ближайшего целого, превосходящего дробное значение. Максимальный балл за HomeWork равен 20.
- На экзамене студент может отказаться от оценки и пойти на пересдачу, на которой может заново получить Oral.
- За каждое несданное задание выставляется минус 10 баллов в баллы по заданиям (допускаются отрицательные значения).
- Если на экзамене итоговая оценка оказывается ниже трех, то студент отправляется на пересдачу. При этом оценка Oral, полученная на пересдаче, добавляется к положительной (три и выше) оценке Oral, полученной на основном экзамене и т.д. до тех пор, пока студент не наберет на итоговую оценку «удовлетворительно» (для итоговых оценок выше «удовлетворительно» оценки Oral не суммируются).
- Студент может досдать недостающие практические задания в любое время. При этом проверка задания гарантируется только в том случае, если задание сдано не позднее, чем за неделю до основного экзамена или пересдачи.
- Штраф за просрочку сдачи заданий начисляется из расчета 0.1 балла в день, но не более 5 баллов.
- В случае успешной сдачи всех практических заданий студент получает возможность претендовать на итоговую оценку «хорошо» и «отлично». При этом экзамен на оценку Oral может сдаваться до сдачи всех заданий (оценки Oral в этом случае не суммируются).
- Экзамен на оценку Oral сдается либо в срок основного экзамена, либо в срок официальных пересдач.
Литература
- Barber D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
- Murphy K.P. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
- Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
- Wainwright M.J., Jordan M.I. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, NOWPress, 2008.
- Koller D., Friedman N. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.
- Cowell R.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. Probabilistic networks and expert systems. Berlin: Springer, 1999.
- Памятка по теории вероятностей
Страницы курса прошлых лет
См. также
Курс «Байесовские методы машинного обучения»
Спецсеминар «Байесовские методы машинного обучения»
Математические методы прогнозирования (кафедра ВМиК МГУ)
Онлайн-курс Стэнфордского университета по вероятностным графическим моделям