Участник:Iefimova
Материал из MachineLearning.
(→Отчет о научно-исследовательской работе) |
|||
Строка 16: | Строка 16: | ||
• ''Ефимова И.В., Целых В.Р., Воронцов К.В.'' Отбор признаков в метрических алгоритмах классификации для дифференциальной диагностики заболеваний по электрокардиограмме // Будет подано в JMLDA | • ''Ефимова И.В., Целых В.Р., Воронцов К.В.'' Отбор признаков в метрических алгоритмах классификации для дифференциальной диагностики заболеваний по электрокардиограмме // Будет подано в JMLDA | ||
- | [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group174/Efimova2014DiagnosticsOfDiseases/doc/Efimova2014DiagnosticsOfDiseases.pdf pdf] | + | [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group174/Efimova2014DiagnosticsOfDiseases/doc/Efimova2014DiagnosticsOfDiseases.pdf?format=raw pdf] |
Версия 16:05, 23 августа 2014
Ефимова Ирина Валерьевна,
МФТИ, ФУПМ, 174 группа
Отчет о научно-исследовательской работе
Весна 2014, 6-й семестр
Отбор признаков в метрических алгоритмах классификации для дифференциальной диагностики заболеваний по электрокардиограмме
Рассматривается задача диагностики заболеваний на основе анализа сигналов электрокардиограммы. Исследование состоит в построении метрического алгоритма с отбором признаков для поиска диагностических эталонов. Отбор признаков производится с помощью локально-оптимального алгоритма. На основе построенных эталонов осуществляется классификация различных болезней. Используются данные о шести заболеваниях, которые получены по анализу электрокардиосигналов. Данные о каждом заболевании разбиты на две подгруппы. Первая подгруппа - более надежные специально отобранные случаи. Они используются на этапе обучения алгоритма. Вторая - случаи, когда диагнозы устанавливались врачами менее надежно. Они используются в качестве контрольного множества. Предполагается, что больные пациенты имеют <<схожее>> признаковое описание, <<отличающееся>> от характеристик здоровых. Для формализации понятия <<схожести>> на множестве объектов вводится функция расстояния - взвешенная метрика Минковского, - которая используется в метрическом алгоритме. В результате, построенный алгоритм позволил отобрать информативные признаки для каждой болезни. Исследуется обобщающая способность построенного алгоритма.
Подготовлена статья:
• Ефимова И.В., Целых В.Р., Воронцов К.В. Отбор признаков в метрических алгоритмах классификации для дифференциальной диагностики заболеваний по электрокардиограмме // Будет подано в JMLDA