Интерполяция каноническим полиномом
Материал из MachineLearning.
(→Постановка задачи) |
(→Полином в каноническом виде) |
||
Строка 45: | Строка 45: | ||
<tex>\mathbf{detA} = \prod_{i,j=0 \\ i \neq j }^n (x_i - x_j) \neq 0 </tex> | <tex>\mathbf{detA} = \prod_{i,j=0 \\ i \neq j }^n (x_i - x_j) \neq 0 </tex> | ||
+ | == Смотри также == | ||
+ | * [http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D1%80%D0%BF%D0%BE%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD_%D0%9B%D0%B0%D0%B3%D1%80%D0%B0%D0%BD%D0%B6%D0%B0 Интерполяционный многочлен Лагранжа] | ||
+ | * [[Метод наименьших квадратов]] | ||
{{Stub}} | {{Stub}} |
Версия 13:31, 29 сентября 2008
Постановка задачи
Пусть задана функция на некотором интервале [x0,xn]. Предположим, что мы знаем значения этой функции в n точках. Известно, что через n+1 точек на плоскости можно провести кривую, являющуюся графиком степенного многочлена (полинома) степени n, причем такой полином единственный.
Этот факт лежит в основе так называемой полиномиальной интерполяции, при которой функцию строят в виде полинома степени n.
Если на всём интервале , содержащем n+1 узлов, строят один полином степени n, то говорят о глобальной интерполяции. Если же интервал разбивается на отрезки, и на каждом из отрезков строится свой полином, то говорят о локальной интерполяции.
Полином в каноническом виде
В качестве аппроксимирующей функции выбирается полином степени в каноническом виде:
Коэффициенты полинома определяются из условий Лагранжа , , что с учётом предыдущего выражения даёт систему уравнений с n+1 неизвестными:
Обозначим систему таких уравнений символом (*) и перепишем её следующим образом:
или в матричной форме: где --- вектор-столбец, содержащий неизвестные коэффициенты , --- вектор-столбец, составленный из табличных значений функции , а матрица имеет вид:
Система линейных алгебраических уравнений (*) относительно неизвестных будет иметь решение, если определитель матрицы отличен от нуля.
Определитель матрицы называют определителем Вандермонда, его можно вычислить по следующей формуле: