Участник:Lr2k/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 19: Строка 19:
Предположим, что система функций <tex>\Phi_k(x)</tex> такова, что при любом выборе узлов <tex>a<x_1<\cdots<x_i<\cdots<x_n=b</tex> отличен от нуля определитель системы:
Предположим, что система функций <tex>\Phi_k(x)</tex> такова, что при любом выборе узлов <tex>a<x_1<\cdots<x_i<\cdots<x_n=b</tex> отличен от нуля определитель системы:
-
<p align="center"><tex>\Delta(\Phi) = \begin{vmatrix} \Phi_0(x_0) & \Phi_1(x_0) & \cdots & \Phi_n(x_0) \\\Phi_0(x_1) & \Phi_1(x_1) & \cdots & \Phi_n(x_1)\\ \cdots & \cdots & \cdots & \cdots \\\Phi_0(x_n) & \Phi_1(x_n) & \cdots & \Phi_n(x_n)\end{vmatrix}</tex>.</p>
+
<p align="center"><tex>\Delta(\Phi) = \begin{vmatrix} \Phi_0(x_0) & \Phi_1(x_0) & \cdots & \Phi_n(x_0) \\\Phi_0(x_1) & \Phi_1(x_1) & \cdots & \Phi_n(x_1)\\ \hdotsfor{4} \\\Phi_0(x_n) & \Phi_1(x_n) & \cdots & \Phi_n(x_n)\end{vmatrix}</tex>.</p>
Тогда по заданным <tex>y_i (i=1,\cdots, n)</tex> однозначно определяются коэффициенты <tex>c_k (k=1,\cdots, n)</tex>.
Тогда по заданным <tex>y_i (i=1,\cdots, n)</tex> однозначно определяются коэффициенты <tex>c_k (k=1,\cdots, n)</tex>.
Строка 25: Строка 25:
== Изложение метода ==
== Изложение метода ==
Интерполяция кубическими сплайнами является частным случаем кусочно-полиномиальной интерполцией. В этом специальном случае между любыми двумя соседними узлами функция интерполируется кубическим полиномом. его коэффициенты на каждом интервале определяются из условий сопряжения в узлах:
Интерполяция кубическими сплайнами является частным случаем кусочно-полиномиальной интерполцией. В этом специальном случае между любыми двумя соседними узлами функция интерполируется кубическим полиномом. его коэффициенты на каждом интервале определяются из условий сопряжения в узлах:
-
<math>f_i=y_i,
+
<p align="center"><tex>\begin{multline}f_i=y_i,
f'(x_i-0)=f'(x_i+0),
f'(x_i-0)=f'(x_i+0),
-
f''(x_i-0)=f''(x_i+0), i=1, 2, \cdots, n-1.</math>
+
f''(x_i-0)=f''(x_i+0), i=1, 2, \cdots, n-1.\end{multiline}</tex></p>
Кроме того, на границе при <tex>x=x_0</tex> и <tex>x=x_n</tex> ставятся условия
Кроме того, на границе при <tex>x=x_0</tex> и <tex>x=x_n</tex> ставятся условия
-
<math>f''(x_0)=0, f''(x_n)=0</math>
+
{{ eqno | 2 }}
 +
<p align="center"><tex>f''(x_0)=0, f''(x_n)=0.</tex></p>
 +
 
 +
Будем искать кубический полином в виде
 +
 
 +
{{ eqno | 2 }}
 +
<p align="center"><tex>f''(x_0)=0, f''(x_n)=0.</tex></p>
=== Формула прямоугольников ===
=== Формула прямоугольников ===

Версия 10:27, 13 октября 2008

Содержание

Введение

Постановка математической задачи

Одной из основных задач численного анализа является задача об интерполяции функций. Пусть на отрезке a\le \x\le \b задана сетка \omega=\{x_i:x_0=a<x_1<\cdots<x_i<\cdots<x_n=b\} и в её узлах заданы значения функции y(x), равные y(x_0)=y_0,\cdots,y(x_i)=y_i,\cdots,y(x_n)=y_n. Требуется построить интерполянту — функцию f(x), совпадающую с функцией y(x) в узлах сетки:

( 1 )

f(x_i)=y_i, i=0,1,\cdots,n.

Основная цель интерполяции — получить быстрый (экономичный) алгоритм вычисления значений f(x) для значений x, не содержащихся в таблице данных.

Интерполируюшие функции f(x), как правило строятся в виде линейных комбинаций некоторых элементарных функций:

f(x)=\sum_{k=0}^N {c_k\Phi_k(x)},

где \{\Phi_k(x)\} — фиксированный линейно независимые функции, c_0, c_1, \cdots, c_n — не определенные пока коэффициенты.

Из условия (1) получаем систему из n+1 уравнений относительно коэффициентов \{c_k\}:

\sum_{k=0}^N {c_k\Phi_k(x_i)}=y_i, i=0,1,\cdots,n.

Предположим, что система функций \Phi_k(x) такова, что при любом выборе узлов a<x_1<\cdots<x_i<\cdots<x_n=b отличен от нуля определитель системы:

\Delta(\Phi) = \begin{vmatrix} \Phi_0(x_0) & \Phi_1(x_0) & \cdots & \Phi_n(x_0) \\\Phi_0(x_1) & \Phi_1(x_1) & \cdots & \Phi_n(x_1)\\ \hdotsfor{4}  \\\Phi_0(x_n) & \Phi_1(x_n) & \cdots & \Phi_n(x_n)\end{vmatrix}.

Тогда по заданным y_i (i=1,\cdots, n) однозначно определяются коэффициенты c_k (k=1,\cdots, n).

Изложение метода

Интерполяция кубическими сплайнами является частным случаем кусочно-полиномиальной интерполцией. В этом специальном случае между любыми двумя соседними узлами функция интерполируется кубическим полиномом. его коэффициенты на каждом интервале определяются из условий сопряжения в узлах:

\begin{multline}f_i=y_i,

f'(x_i-0)=f'(x_i+0),

f''(x_i-0)=f''(x_i+0), i=1, 2, \cdots, n-1.\end{multiline}

Кроме того, на границе при x=x_0 и x=x_n ставятся условия

( 2 )

f''(x_0)=0, f''(x_n)=0.

Будем искать кубический полином в виде

( 2 )

f''(x_0)=0, f''(x_n)=0.

Формула прямоугольников

Рис.2
Рис.2

Заменим интеграл (3) выражением f(x_{i-1/2})h, где x_{i-1/2}=x_{i}-0.5h.

Тогда получим формулу

( 5 )

\int_{x_{i-1}}^{x_i}{f(x)dx}\approx f(x_{i-1/2})h,

которая называется формулой прямоугольников на частичном отрезке [x_{i-1},x_i].

Погрешность метода (5) определяется величиной

\psi_{i}=\int_{x_{i-1}}^{x_i}{f(x)dx}-f(x_{i-1/2})h

которую легко оценить с помощью формулы Тейлора. Действительно, запишем \psi_{i} в виде

( 6 )

\psi_{i}=\int_{x_{i-1}}^{x_i}{(f(x)-f(x_{i-1/2}))dx}

и воспользуемся разложением

f(x)=f(x_{i-1/2})+(x-x_{i-1/2})f'(x_{i-1/2})+\frac{(x-x_{i-1/2})^2}{2}f''(\xi),

где \xi_i=\xi_i(x)\in [x_{i-1},x_i]. Тогда из (6) получим

\psi_{i}=\int_{x_{i-1}}^{x_i}{\frac{(x-x_{i-1/2})^2}{2}f''(\xi_i)dx}

Обозначая M_{2,i}=\underset{x\in [x_{i-1},x_i]}{max}|f''(x)|, оценим \psi_i следующим образом:

|\psi_i|\le M_{2,i} \int_{x_{i-1}}^{x_i}{\frac{(x-x_{i-1/2})^2}{2}dx}=\frac{h^3}{24}M_{2,i}

Таким образом, для погрешности формулы прямоугольников на частичном отрезке справедлива оценка

( 7 )

|\psi_i|\le \frac{h^3}{24}M_{2,i}

т.е. формула имеет погрешность O(h^3) при h\rightarrow0.

Заметим,что оценка (7) является неулучшаемой, т.е. существует функция f(x), для которой (7) выполняется со знаком равенства. Действительно, для f(x)=(x-x_{i-1/2})^2 имеем M_{2,i}=2, f(x_{i-1/2})=0 и

\int_{x_{i-1}}^{x_i}{f(x)dx}-f(x_{i-1/2})h=\frac{h^3}{24}M_{2,i}

Суммируя равенства (5) по i от 1 до N, получим составную формулу прямоугольников

( 8 )

\int_{a}^{b}{f(x)dx}\approx \sum_{i=1}^N{f(x_{i-1/2})h}

Погрешность этой формулы

\Psi=\int_{a}^{b}{f(x)dx}-\sum_{i=1}^N{f(x_{i-1/2})h}

равна сумме погрешностей по всем частичным отрезкам,

\Psi=\sum_{i=1}^N{\psi_i}=\sum_{i=1}^N{\int_{x_{i-1}}^{x_i}{\frac{(x-x_{i-1/2})^2}{2}f''(\xi_i)dx}}

Отсюда, обозначая M_2=\underset{x\in [a,b]}{max}|f''(x)|, получим

( 9 )

|\Psi|\le\frac{M_2Nh^3}{24}=\frac{h^2(b-a)}{24}M_2

т.е. погрешность формулы прямоугольников на всем отрезке есть велицина O(h^2).

В этом случае говорят, что квадратурная формула имеет второй порядок точнотси.

Формула трапеций

Рис.3
Рис.3

На частичном отрезке эта формула имеет вид

( 10 )

\int_{x_{i-1}}^{x_i}{f(x)dx}\approx \frac{f(x_{i-1})+f(x_i)}{2}h

и получается путем замены подынтегральной функции f(x) интерполяционным многочленом первой степени,постоенным по узлам x_{i-1},x_i, т.е. функцией

L_{1,i}(x)=\frac{1}{h}((x-x_{i-1})f(x_i)-(x-x_i)f(x_{i-1})).

Для оценки погрешности достаточно вспомнить,что

f(x)-L_{1,i}(x)=\frac{(x-x_{i-1})(x-x_i)}{2}f''(\xi_i(x)).

Отсюда получим

\psi_i=\int_{x_{i-1}}^{x_i}{f(x)dx}-\frac{f(x_{i-1})+f(x_i)}{2}h=\int_{x_{i-1}}^{x_i}{(f(x)-L_{1,i}(x))dx}=\int_{x_{i-1}}^{x_i}{\frac{(x-x_{i-1})(x-x_i)}{2}f''(\xi_i(x))dx}

и,следовательно,

( 11 )

|\psi_i|\le \frac{M_{2,i}h^3}{12}

Оценка (11) неулучшаема, так как в ней достигается равенство, например, для f(x)=(x-x_i)^2.

Составная формула трапеций имеет вид

( 12 )

\int_{a}^{b}{f(x)dx}\approx \sum_{i=1}^N{\frac{f(x_{i-1})+f(x_i)}{2}h}=h(0.5f_0+f_1+...+f_{N-1}+0.5f_N),

где f_i=f(x_i),i=0,1,...,N,hN=b-a.

Погрешность этой формулы оценивается следующим образом:

( 13 )

|\Psi|\le \frac{h^2(b-a)}{12}M_2,M_2=\underset{x\in [a,b]}{max}|f''(x)|

Таким образом, формула трапеций имеет, так же как и формула прямоугольников, второй порядок точности,\Psi=O(h^2), но ее погрешность оценивается величиной в два раза большей.

Числовой пример

Вычислим по формулам прямоугольников и трапеций при n=2 интеграл

( 14 )

I=\int_{0}^{\pi/2}{\sin(x)dx} = 1

В данном случае


P_2=\frac{\pi}{4}(\sin(\frac{\pi}{8})+\sin(\frac{3\pi}{8}))=1.026172

T_2=\frac{\pi}{4}(\frac{1}{2}\sin(0)+\sin(\frac{\pi}{4})+\frac{1}{2}\sin(\frac{\pi}{2}))=0.948059

Зная точный ответ (14), найдем погрешности

( 15 )

\alpha_2=-0.026172,\beta_2=0.051941

Вторая производная функции \sin(x) на отрезке [0,\pi/2] отрицательна, ее модуль не превышает единицы: M_2=1. Величина погрешностей (15) удовлетворяет неравенствам (9) и (13):

|\alpha_2|\le \frac{1}{96}(\frac{\pi}{2})^3<0.041,|\beta_2|\le \frac{1}{48}(\frac{\pi}{2})^3<0.081

Рекомендации программисту

Автоматический выбор шага интегрирования

Величина погрешности численного интегрирования зависит как от шага сетки h, так и от гладкости подынтегральной функции f(x). Например, в оценку (11), наряду с h, входит величина

M_{2,i}=\underset{x\in [x_{i-1},x_i]}{max}|f''(x)|,

которая может сильно меняться от точки к точке и, вообще говоря, заранее неизвестна. Если величина погрешности велика, то ее можно уменьшить путем измельчения сетки на данном отрезке [x_{i-1},x_i]. Для этого прежде всего надо уметь апостериорно, т.е. после проведения расчета, оценивать погрешность.

Апостериорную оценку погрешности можно осуществить методом Рунге. Пусть какая-то квадратурная формула имеет на частичном отрезке порядок точности m, т.е. I_i-I_{h,i}\approx c_i h_i^m. Тогда

I_i-I_{h/2,i}\approx c_i (\frac{h_i}{2})^m,

откуда получим

( 16 )

I_i-I_{h,i}\approx 2^m (I_i-I_{h/2,i}),

( 17 )

I_i-I_{h/2,i}\approx \frac{I_{h/2,i}-I_{h,i}}{2^m-1}

Возможность апостериорно оценивать погрешность позволяет вычислять интеграл (1) с заданной точностью \epsilon >0 путем автоматического выбора шага интегрирования h_i. Пусть используется составная квадратурная формула

I\approx I_h=\sum_{i=1}^N{I_{h,i}}

где I_{h,i} - квадратурная сумма на частичном отрезке, причем на каждом частичном отрезке используется одна и та же квадратурная формула (например, формула трапеций). Проведем на каждом частичном отрезке [x_{i-1},x_i] все вычисления дважды, один раз - с шагом h_i и второй раз - с шагом 0.5h_i и оценим погрешность по правилу Рунге (17).

Если для заданного \epsilon >0 будут выполняться неравенства

( 18 )

|I_i-I_{h/2,i}|\approx \frac{|I_{h/2,i}-I_{h,i}|}{2^m-1} \le \frac{\epsilon h_i}{b-a},i=1,2,...,N,

то получим

|I-I_h/2|\le \frac{\epsilon}{b-a}\sum_{i=1}^N{h,i}=\epsilon,

т.е. будет достигнута заданная точность \epsilon.

Если же на каком-то из частичных отрезков оценка (18) не будет выполняться, то шаг на этом отрезке надо измельчить еще в два раза и снова оценить погрешность. Измельчение сетки на данном отрезке следует проводить до тех пор, пока не будет достигнута оценка вида (18). Заметим, что для некоторой функции f(x) такое измельчение может продолжаться слишком долго. Поэтому в соответствующей программе следует предусмотреть ограничение сверху на число измельчений,а также вожможность увеличения \epsilon.

Таким образом, автоматический выбор шага интегрирования приводит к тому, что интегрирование ведется с крупным шагом на участках плавного изменения функции f(x) и с мелким шагом - на участках быстрого изменения f(x). Это позволяет при заданной точности \epsilon уменьшить количество вычислений значений f(x) по сравнению с расчетом на сетке с постоянным шагом. Подчеркнем, что для нахождения сумм I_{h/2,i} не надо пересчитывать значения f(x) во всех узлах, достаточно вычислять f(x) только в новых узлах.

Заключение

Список литературы

  • А.А.Самарский, А.В.Гулин.  Численные методы М.: Наука, 1989.
  • А.А.Самарский.  Введение в численные методы М.: Наука, 1982.
Личные инструменты