Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1
Материал из MachineLearning.
(Различия между версиями)
м |
м |
||
Строка 1: | Строка 1: | ||
- | Ниже под обозначением <tex>X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot F</tex> понимается выборка объёма <tex>n</tex> из смеси нормального распределения <tex>N(\mu,\sigma^2)</tex> и распределения <tex>F</tex> с весами <tex>p</tex> и <tex>1-p</tex> соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит <tex>p</tex>, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из распределения F). | + | <!---Ниже под обозначением <tex>X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot F</tex> понимается выборка объёма <tex>n</tex> из смеси нормального распределения <tex>N(\mu,\sigma^2)</tex> и распределения <tex>F</tex> с весами <tex>p</tex> и <tex>1-p</tex> соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит <tex>p</tex>, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из распределения F). |
- | + | ---> | |
= Анализ поведения схожих критериев = | = Анализ поведения схожих критериев = | ||
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия. | Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия. |
Версия 12:30, 25 февраля 2015
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
- Сендерович: , сравнить z-критерии в версиях Вальда и множителей Лагранжа.
- Лисяной: , сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
-
средние равны,
средние не равны;
- Колмаков: Сравнить версии t-критерия для неизвестных равных и неизвестных неравных дисперсий.
- Шапулин: Сравнить t-критерий для неизвестных неравных дисперсий и z-критерий для известных неравных дисперсий.
- Тюрин: Сравнить t-критерий для неизвестных неравных дисперсий и критерий Манна-Уитни-Уилкоксона.