Участник:Riabenko/tmp

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
м
Строка 1: Строка 1:
-
= Анализ устойчивости критериев к нарушению предположений =
+
 
-
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
+
* Одновыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о нормальности. <br> <tex>X^n, \;\; X \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot F; </tex> <br> <tex>H_0\,:\; \mathbb{E}X=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X\neq0.</tex> <br>
* Одновыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о нормальности. <br> <tex>X^n, \;\; X \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot F; </tex> <br> <tex>H_0\,:\; \mathbb{E}X=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X\neq0.</tex> <br>
::: <tex>F = U\left[-2+\mu, 2+\mu\right]</tex>—&nbsp;непрерывное равномерное распределение на <tex>\left[-2+\mu,2+\mu\right]; \;\;\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=30.</tex>
::: <tex>F = U\left[-2+\mu, 2+\mu\right]</tex>—&nbsp;непрерывное равномерное распределение на <tex>\left[-2+\mu,2+\mu\right]; \;\;\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=30.</tex>
::: <tex>F = C\left(\mu,2\right)</tex>—&nbsp;распределение Коши с коэффициентом сдвига <tex>\mu</tex> и коэффициентом масштаба <tex>2; \;\; \mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=50.</tex>
::: <tex>F = C\left(\mu,2\right)</tex>—&nbsp;распределение Коши с коэффициентом сдвига <tex>\mu</tex> и коэффициентом масштаба <tex>2; \;\; \mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=50.</tex>
-
 
-
* Двухвыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о равенстве дисперсий. <br> <tex>X_1^{n_1}, \;\; X_{1} \sim N(0,1), \;\; X_2^{n_2}, \;\; X_{2} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1} = \mathbb{E}X_{2}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1} \neq \mathbb{E}X_{2}.</tex>
 
-
::: <tex>\mu=1, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=5\,:\,1\,:\,70, \;\; n_2 = 30.</tex>
 

Версия 12:36, 25 февраля 2015


  • Одновыборочный t-критерий, нарушение предположения о нормальности.
    X^n, \;\; X \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot F;
    H_0\,:\; \mathbb{E}X=0
    H_1\,:\; \mathbb{E}X\neq0.
F = U\left[-2+\mu, 2+\mu\right]— непрерывное равномерное распределение на \left[-2+\mu,2+\mu\right]; \;\;\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=30.
F = C\left(\mu,2\right)— распределение Коши с коэффициентом сдвига \mu и коэффициентом масштаба 2; \;\; \mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; n=50.






Личные инструменты