Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1
Материал из MachineLearning.
м (→Анализ устойчивости критериев к нарушению предположений) |
м (→Анализ поведения схожих критериев) |
||
Строка 9: | Строка 9: | ||
* <tex>X_1^{n_1}, \;\; X_{1} \sim N(\mu_1, \sigma_1^2),\;\;X_2^{n_2}, \;\; X_{2} \sim N(\mu_2, \sigma_2^2);</tex><br><tex>H_0\,:</tex> средние равны, <br><tex>\;H_1\,:</tex> средние не равны;<br><tex>n_1=25, \;\; \mu_1=0, \;\; \sigma_1=1.</tex> | * <tex>X_1^{n_1}, \;\; X_{1} \sim N(\mu_1, \sigma_1^2),\;\;X_2^{n_2}, \;\; X_{2} \sim N(\mu_2, \sigma_2^2);</tex><br><tex>H_0\,:</tex> средние равны, <br><tex>\;H_1\,:</tex> средние не равны;<br><tex>n_1=25, \;\; \mu_1=0, \;\; \sigma_1=1.</tex> | ||
- | ::Колмаков: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить версии t-критерия для | + | ::Колмаков: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить версии t-критерия для равных и неравных дисперсий. |
- | ::Шапулин: <tex>\mu_2=0.5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить t- | + | ::Шапулин: <tex>\mu_2=0.5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить t- и z-критерии для неравных дисперсий. |
- | ::Тюрин: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=50.</tex> Сравнить t-критерий для | + | ::Тюрин: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=50.</tex> Сравнить t-критерий для неравных дисперсий и критерий Манна-Уитни-Уилкоксона. |
= Анализ устойчивости критериев к нарушению предположений = | = Анализ устойчивости критериев к нарушению предположений = |
Версия 12:41, 25 февраля 2015
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
- Сендерович: , сравнить z-критерии в версиях Вальда и множителей Лагранжа.
- Лисяной: , сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
-
средние равны,
средние не равны;
- Колмаков: Сравнить версии t-критерия для равных и неравных дисперсий.
- Шапулин: Сравнить t- и z-критерии для неравных дисперсий.
- Тюрин: Сравнить t-критерий для неравных дисперсий и критерий Манна-Уитни-Уилкоксона.
Анализ устойчивости критериев к нарушению предположений
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
- Двухвыборочный t-критерий для равных дисперсий, нарушение предположения о равенстве дисперсий.
- Хальман: