Рациональная интерполяция
Материал из MachineLearning.
(Различия между версиями)
(Новая: ==Введение== Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиаль...) |
(→Введение) |
||
Строка 3: | Строка 3: | ||
Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто ''рациональное''), которое соответсвует отношению двух многочленов. | Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто ''рациональное''), которое соответсвует отношению двух многочленов. | ||
- | + | <tex>R(x)=\frac{a_0+a_1x+\dots+a_px^p}{b_0+b_1x+\dots+b_px^p}, p+q+1=n</tex> | |
- | <tex> | + | Коэффициенты <tex>a_i, b_i</tex> можно найти из совокупности соотношений <tex>R(x_j)=y_j, j=1,\dots,n,</tex> которые можно записать в виде |
- | + | <tex> \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\dots, n</tex> | |
- | + | ||
- | <tex>f( | + | |
==Погрешность вычислений== | ==Погрешность вычислений== |
Версия 12:41, 19 октября 2008
Содержание |
Введение
Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто рациональное), которое соответсвует отношению двух многочленов.
Коэффициенты можно найти из совокупности соотношений которые можно записать в виде