Рациональная интерполяция
Материал из MachineLearning.
(Различия между версиями)
(→Введение) |
(→Введение) |
||
Строка 8: | Строка 8: | ||
<tex> \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\dots, n</tex> | <tex> \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\dots, n</tex> | ||
+ | |||
+ | Таким образом полычаем систему ''n'' линейных алгебраических уравнений относительно ''n+1'' неизыестных. | ||
+ | Функция ''R(x)'' может быть записана в явном виде в случаях, когда ''n'' нечетное и ''p=q'', и когда ''n'' четное и ''p-q=1''. | ||
==Погрешность вычислений== | ==Погрешность вычислений== |
Версия 12:45, 19 октября 2008
Содержание |
Введение
Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто рациональное), которое соответсвует отношению двух многочленов.
Коэффициенты можно найти из совокупности соотношений которые можно записать в виде
Таким образом полычаем систему n линейных алгебраических уравнений относительно n+1 неизыестных. Функция R(x) может быть записана в явном виде в случаях, когда n нечетное и p=q, и когда n четное и p-q=1.