Вычисление второй производной по разным переменным

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Постановка математической задачи)
(Постановка математической задачи)
Строка 1: Строка 1:
== Введение ==
== Введение ==
=== Постановка математической задачи ===
=== Постановка математической задачи ===
-
Допустим, что в некоторой точке <tex>x</tex> у функции <tex>f(x,y)</tex> существует производная 2-го порядка <tex>\frac{\partial^2 y}{\partial x\ \partial y} </tex>, которую точно вычислить либо не удаётся, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
+
Допустим, что в некоторой точке <tex>x</tex> у функции <tex>f(x,y)</tex> существует производная 2-го порядка <tex>\frac{\partial^2 f(x,y)}{\partial x\ \partial y} </tex>, которую точно вычислить либо не удаётся, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.

Версия 12:23, 20 октября 2008

Введение

Постановка математической задачи

Допустим, что в некоторой точке x у функции f(x,y) существует производная 2-го порядка \frac{\partial^2 f(x,y)}{\partial x\ \partial y} , которую точно вычислить либо не удаётся, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.

Личные инструменты