Нелинейная регрессия

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{{TOCright}}
'''Нелинейная регрессия''' - частный случай [[регрессионный анализ|регрессионного анализа]],
'''Нелинейная регрессия''' - частный случай [[регрессионный анализ|регрессионного анализа]],
в котором рассматриваемая [[регрессионная модель|регрессионная модель]] есть функция,
в котором рассматриваемая [[регрессионная модель|регрессионная модель]] есть функция,

Версия 09:40, 4 ноября 2008

Содержание

Нелинейная регрессия - частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.

Постановка задачи

Задана выборка из m пар (\mathbf{x}_i,y_i). Задана регрессионная модель f(\mathbf{w},\mathbf{x}), которая зависит от параметров \mathbf{w}=(w_1,...,w_W) и свободной переменной x. Требуется найти такие значения параметров, которые доставляли бы минимум сумме квадратов регрессионных остатков

S=\sum_{i=1}^mr_i,

где остатки r_i=y_i-f(\mathbf{w},\mathbf{x}_i) для i=1,\ldots,m.

Для нахождения минимума функции S, приравняем к нулю её первые частные производные параметрам \mathbf{w}:

\frac{\partial S}{\partial w_j}=2\sum_i r_i\frac{\partial r_i}{\partial w_j}=0 \ (j=1,\ldots,n). (*)

Так как функция S в общем случае не имеет единственного минимума[1], то предлагается назначить начальное значение вектора параметров w_0 и приближаться к оптимальному вектору по шагам:

w_j \approx w_j^{k+1} =w^k_j+\Delta w_j.

Здесь k - номер итерации, \Delta w_j - вектор шага.

На каждом шаге итерации линеаризуем модель с помощью приближения рядом Тейлора относительно параметров \mathbf{w}^k

f(x_i,\mathbf{w})\approx f(x_i,\mathbf{w}^k) +\sum_j \frac{\partial f(x_i,\mathbf{w}^k)}{\partial w_j} \left(w_j -w^{k}_j \right) \approx f(x_i,\mathbf{w}^k) +\sum_j J_{ij} \Delta w_j.

Здесь элемент матрицы Якоби J_{ij} - функция параметра w_j; значение свободной переменной \mathbf{x}_i фиксировано. В терминах линеаризованной модели

\frac{\partial r_i}{\partial w_j}=-J_{ij}

и регрессионные остатки определены как

r_i=\Delta y_i- \sum_{j=1}^{n} J_{ij}\Delta w_j; \ \Delta y_i=y_i- f(x_i,\mathbf{w}^k).

Подставляя последнее выражение в выражение (*), получаем

-2\sum_{i=1}^{m}J_{ij} \left( \Delta y_i-\sum_{s=1}^{n} J_{is}\Delta w_s \right)=0.

Преобразуя, получаем систему из n линейных уравнений, которые называются нормальным уравнением

\sum_{i=1}^{m}\sum_{s=1}^{n} J_{ij}J_{is}\Delta w_s=\sum_{i=1}^{m} J_{ij}\Delta y_i (j=1,n).

Запишем нормальное уравнение в матричном обозначении как

\mathbf{\left(J^TJ\right)\Delta \mathbf{w}=J^T\Delta y}.

В том случае, когда критерий оптимальности регрессионой модели задан как взвешенная сумма квадратов остатков

S=\sum_{i=1}^{m}W_{ii}r_i^2,

нормальное уравнение будет иметь вид

\mathbf{\left(J^TWJ\right)\Delta \mathbf{w}=J^TW\Delta y}.

Для нахождения оптимальных параметров нелинейных регрессионных моделей используются метод сопряженных градиентов, алгоритм Гаусса-Ньютона или алгоритм Левенберга-Марквардта.

Литература

  • Seber G.A.F Wild C.J. Nonlinear Regression. New York: John Wiley and Sons, 1989.

Примечания

Смотри также

Личные инструменты