Критерий хи-квадрат
Материал из MachineLearning.
(Различия между версиями)
(→Определение) |
(викификация, категория) |
||
Строка 1: | Строка 1: | ||
+ | {{TOCright}} | ||
+ | {{UnderConstruction|[[Участник:Венжега Андрей|Венжега Андрей]] 00:08, 14 ноября 2008 (MSK)}} | ||
== Определение == | == Определение == | ||
Строка 36: | Строка 38: | ||
== Ссылки == | == Ссылки == | ||
- | {{ | + | {{stub}} |
+ | [[Категория:Математическая статистика]] |
Версия 18:59, 14 ноября 2008
|
Статья в настоящий момент дорабатывается. Венжега Андрей 00:08, 14 ноября 2008 (MSK) |
Определение
Пусть дана случайная величина X .
Гипотеза : с. в. X подчиняется закону распределения .
Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X:
.
По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения производится с помощью специально подобранной случайной величины — критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):
Гипотеза : Хn порождается функцией .
Разделим [a,b] на k непересекающихся интервалов ;
Пусть - количество наблюдений в j-м интервале: ;
- вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;
Ожидаемое число попаданий в j-ый интервал;
Статистика:
Проверка гипотезы
- гипотеза неслучайности
- гипотеза случайности
- гипотеза согласия