Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Формула замены переменных в неопределенном интеграле)
(Формула замены переменных в неопределенном интеграле)
Строка 54: Строка 54:
Для того чтобы существовала функция <tex> \phi^{-1} </tex>, обратная <tex> \phi </tex>, в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке <tex> \Delta_t </tex> функция <tex> \phi </tex> была строго монотонной. В этом случае, существует однозначная обратная функция <tex> \phi^{-1} </tex>.
Для того чтобы существовала функция <tex> \phi^{-1} </tex>, обратная <tex> \phi </tex>, в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке <tex> \Delta_t </tex> функция <tex> \phi </tex> была строго монотонной. В этом случае, существует однозначная обратная функция <tex> \phi^{-1} </tex>.
 +
 +
'''4.''' Интегралы вида [[Изображение:Q14.png‎]] в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.
 +
 +
Действительно, замечая, что [[Изображение:Q15.png‎]], сделаем замену переменной [[Изображение:Q16.png‎]] и положим [[Изображение:Q17.png‎]]. Тогда [[Изображение:Q18.png‎]] и, в силу формулы {{eqref|2}}, получим
 +
 +
::[[Изображение:Q19.png‎]]
 +
 +
(перед <tex> t^2 </tex> стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной <tex> t </tex> к переменной <tex> x </tex>, получим искомый интеграл.
 +
 +
Подобным же приемом вычисляются и интегралы вида
 +
 +
::[[Изображение:Q20.png‎]]
 +
 +
'''5.''' Интеграл [[Изображение:Q21.png‎]] можно вычислить с помощью подстановки
 +
<tex> x = a sin t </tex>. Имеем <tex> dx = a cos t dt </tex>, поэтому
 +
 +
::[[Изображение:Q22.png‎]]
 +
 +
Подставляя это выражение <tex> t = arcsin \frac{x}{a} </tex> и замечая, что
 +
 +
::[[Изображение:Q23.png‎]]
 +
 +
окончательно будем иметь
 +
 +
::[[Изображение:Q24.png‎]]
 +
 +
Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.

Версия 18:05, 16 ноября 2008

Формула замены переменных в неопределенном интеграле

Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.

Теорема.

Пусть функции  f(x) и  \phi(x) определены соответственно на промежутках  \Delta_x и  \Delta_y , причем  \phi(\Delta_t) \subset \Delta_x . Если функция  f имеет на  \Delta_x первообразную  F{x) и, следовательно,

Изображение:Q1.jpg‎ (1)

а функция  \phi(x) дифференцируема на  \Delta_t , то функция  f(\phi(t))\phi^,(t) имеет на  \Delta_t , первообразную  F(\phi(t)) и

Изображение:Q2.png‎ (2)


Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  \phi(t) = x . Это название объясняется тем, что если формулу (2) записать в виде

Изображение:Q3.png‎

то будет видно, что, для того чтобы вычислить интеграл Изображение:Q4.png‎), можно сделать подстановку  x = \phi(t) , вычислить интеграл  \int f(x) dx и затем вернуться к переменной  t , положив  x = \phi(t) .


Примеры.

1. Для вычисления интеграла  \int cos ax dx естественно сделать подстановку  u = ax , тогда

Изображение:Q5.png‎

2. Для вычисления интеграла Изображение:Q6.png‎ удобно применить подстановку  u = x^3 + a^3 :

Изображение:Q7.png‎

3. При вычислении интегралов вида Изображение:Q8.png‎ полезна подстановка  u = \phi(x) :

Изображение:Q9.png‎

Например,

Изображение:Q10.png‎

Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:

Изображение:Q11.png‎

Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла  \int f(x) dx с помощью соответствующей замены переменного  x = \phi(t) свести к вычислению интеграла Изображение:Q12.png‎ (если этот интеграл в каком-то смысле «проще» исходного).

В случае, когда функция  \phi имеет обратную  \phi^{-1} , перейдя в обеих частях формулы (2) к переменной  x с помощью подстановки  t = \phi^{-1}(x) и поменяв местами стороны равенства, получим

Изображение:Q13.png‎

Эта формула называется обычно формулой интегрирования заменой переменной.

Для того чтобы существовала функция  \phi^{-1} , обратная  \phi , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке  \Delta_t функция  \phi была строго монотонной. В этом случае, существует однозначная обратная функция  \phi^{-1} .

4. Интегралы вида Изображение:Q14.png‎ в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.

Действительно, замечая, что Изображение:Q15.png‎, сделаем замену переменной Изображение:Q16.png‎ и положим Изображение:Q17.png‎. Тогда Изображение:Q18.png‎ и, в силу формулы (2), получим

Изображение:Q19.png‎

(перед  t^2 стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной  t к переменной  x , получим искомый интеграл.

Подобным же приемом вычисляются и интегралы вида

Изображение:Q20.png‎

5. Интеграл Изображение:Q21.png‎ можно вычислить с помощью подстановки  x = a sin t . Имеем  dx = a cos t dt , поэтому

Изображение:Q22.png‎

Подставляя это выражение  t = arcsin \frac{x}{a} и замечая, что

Изображение:Q23.png‎

окончательно будем иметь

Изображение:Q24.png‎

Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.

Личные инструменты