Метод золотого сечения. Симметричные методы
Материал из MachineLearning.
(→Анализ метода) |
(→Анализ метода) |
||
Строка 55: | Строка 55: | ||
Считаем, что один шаг - это один этап цикла (п. 2-4). | Считаем, что один шаг - это один этап цикла (п. 2-4). | ||
- | Изначальная длина отрезка составляет <tex>\Delta_0=a-b</tex>. | + | Изначальная длина отрезка составляет <tex>\Delta_0=a-b</tex>. |
- | После первого шага: <tex>\Delta_1=\frac{a-b}{2}+(1-\frac{1}{2}) \delta</tex>, | + | |
+ | После первого шага: <tex>\Delta_1=\frac{a-b}{2}+(1-\frac{1}{2}) \delta</tex>, | ||
+ | |||
После <tex>k</tex>-го шага: <tex>\Delta_k=\frac{a-b}{2^k}+(1-\frac{1}{2^k}) \delta</tex>. | После <tex>k</tex>-го шага: <tex>\Delta_k=\frac{a-b}{2^k}+(1-\frac{1}{2^k}) \delta</tex>. | ||
Версия 14:00, 18 ноября 2008
Содержание |
Постановка задачи
В данной статье рассмотрены некоторые методы поиска экстремума функции одного переменного.
Пусть дана функция , необходимо найти минимум этой функции на заданном отрезке (задача максимума решается аналогично). Предполагается, что производная функции либо не существует, либо сложно вычислима, что не позволяет свести задачу к поиску корней производной .
Методы заключаются в построении последовательности отрезков , стаягивающихся к точке .
Проанализируем симметричные методы поиска и оценим их эффективность и точность.
Требования к функции
Рассматривая все функции, пусть даже непрерывные, можно построить такой пример, что , хотя .
Гарантировать применимость рассматриваемых методов можно только для унимодальных функций.
Определение : Функция называется унимодальной на отрезке , если ∃! точка минимума на этом отрезке такая, что для любых точек этого отрезка
Другими словами унимодальная функция монотонна на обе стороны от точки минимума . Аналогично определяется унимодальная функция и для задачи на максимум. Унимодальные функции могут быть непрерывными, разрывными, дискретными...
Далее будем рассматривать только унимодальные функции. При этом предполагаем, что они определены в достаточном количестве точек.
Симетричные методы
В классе симметричных методов на каждом шаге выбирается две точки отрезка и , симметрично расположенных относительно центра этого отрезка. Дальнейшие действия определяются свойством унимодальной функции:
Пусть функция унимодальна на отрезке , а ее минимум достигается в точке . Для любых точек и этого отрезка и таких, что верно следующее:
- если , то точка минимума ,
- если , то точка минимума .
Исходя из определения методов, видно, что всякий симметричный метод полностью определяется заданием отрезка и правилом выбора первой точки. Тогда другая точка находится по правилу общему для всех симметричных методов:
.
Соответственно, методы различаются способом выбора симметричных точек и .
Метод деления отрезка пополам
Описание метода
Параметры на входе: - достаточно малые положительные константы.
1. Повторять:
- 2. ;
- 3. Если , то ;
- 4. Если , то ;
5. пока ;
6. .
Анализ метода
Считаем, что один шаг - это один этап цикла (п. 2-4).
Изначальная длина отрезка составляет .
После первого шага: ,
После -го шага: .
Если мы останавливаемся на -м шаге, то погрешность результата составит:
Рекомендации в выборе параметров
Метод золотого сечения
Описание метода
Анализ метода
Рекомендации в выборе параметров
Улучшение метода Золотого сечения
Описание метода
Анализ метода
Рекомендации в выборе параметров
Числовой пример
Заключение
Список литературы
- Карманов В.Г. Математическое программирование: Учебное пособие. - М.:ФИЗМАТЛИТ, 2004
- Горячев Л.В. Одномерная минимизация. Методические указания к самостоятельной работе студентов по курсу “Методы оптимизации” - кафедра процессов управления ДВГУ, 2003