Метод градиентного спуска
Материал из MachineLearning.
(Различия между версиями)
(Новая: == Постановка задачи == Рассмотрим задачу поиска минимума функции <tex>f(x): \mathbb{R}^n \to \mathbb{R} </tex>, записываем...) |
|||
Строка 23: | Строка 23: | ||
# Повторять: | # Повторять: | ||
- | # <tex>x^{[j+1]}=x^{[j]}-\lambda^{[j]}\nabla f(x^{[j]}) </tex>, где <tex>\lambda^{[j]}=\arg\min_{\lambda} \,f(x^{[j]}-\lambda \nabla f(x^{[j]})) </tex> | + | # <tex>x^{[j+1]}=x^{[j]}-\lambda^{[j]}\nabla f(x^{[j]}) </tex>, где <tex>\lambda^{[j]}=\arg\min_{\lambda} \,f(x^{[j]}-\lambda \nabla f(x^{[j]})) </tex> или другой метод выбора <tex>\lambda^{[j]}</tex> |
# если выполен критерий останова, то возвращаем текущее значение <tex>x^{[j+1]}</tex> | # если выполен критерий останова, то возвращаем текущее значение <tex>x^{[j+1]}</tex> | ||
Версия 22:18, 18 ноября 2008
Содержание |
Постановка задачи
Рассмотрим задачу поиска минимума функции , записываемую в виде:
(1)
Метод градиентного спуска
Идея метода
Основная идея метода заключается в том, чтобы идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом :
где выбирается
- постоянной, в этом случае метод может расходиться;
- дробным шагом, т.е. длина шага в процессе спуска делится на некое число;
- наискорейшим спуском:
Алгоритм
Вход: функция
Выход: найденная точка оптимума
- Повторять:
- , где или другой метод выбора
- если выполен критерий останова, то возвращаем текущее значение
Критерий останова
Критерии остановки процесса приближенного нахождения минимума могут быть основаны на различных соображениях. Некоторые из них:
Здеcь - значение, полученное после -го шага оптимизации. - наперед заданное положительное число.
Сходимость метода
Числовые примеры
Рекомендации программисту
Заключение
Ссылки
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы. Лаборатория Базовых Знаний, 2003.
- Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.