Метод простых итераций

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 6: Строка 6:
Заменеим исходное уравнение <tex>f(x)=0</tex> на эквивалентное <tex>g(x)=x</tex>.<br>
Заменеим исходное уравнение <tex>f(x)=0</tex> на эквивалентное <tex>g(x)=x</tex>.<br>
Итерации будем строить по правилу <tex>g(x_n)=x_{n+1}</tex><br>
Итерации будем строить по правилу <tex>g(x_n)=x_{n+1}</tex><br>
-
Для содимости метода очень важен выбор функции <tex>g(x)</tex>, поэтому ее обычно берут вида <tex>g(x)=x+s(x)f(x)</tex><br>
+
Для сходимости метода очень важен выбор функции <tex>g(x)</tex>, поэтому ее обычно берут вида <tex>g(x)=x+s(x)f(x)</tex><br>
===Сходимость метода===
===Сходимость метода===

Версия 15:27, 22 ноября 2008

Содержание

Постановка задачи

Пусть есть функция y = f(x).
Требуется найти корень этой функции, то есть x при котором f(x)=0
Решение необходимо найти численно, то есть для реализации на ЭВМ. Для решения этой задачи предлагается использовать метод простых итераций и его обобщения.

Метод простых итераций в общем виде

Заменеим исходное уравнение f(x)=0 на эквивалентное g(x)=x.
Итерации будем строить по правилу g(x_n)=x_{n+1}
Для сходимости метода очень важен выбор функции g(x), поэтому ее обычно берут вида g(x)=x+s(x)f(x)

Сходимость метода

Числовые примеры

Рекомендации программисту

Заключение

Ссылки

Список литературы

  • А.А.Самарский, А.В.Гулин.  Численные методы. Москва «Наука», 1989.
  • Н.Н.Калиткин.  Численные методы. Москва «Наука», 1978.
Личные инструменты