Метод Ньютона. Метод Стеффенсена

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Введение)
Строка 2: Строка 2:
Часто приходится искать методы для решения задач оптимизации, а когда нашли много методов выбирать подходящий. Здесь мы рассмотрим и сравним два метода минимизации многомерных функций.
Часто приходится искать методы для решения задач оптимизации, а когда нашли много методов выбирать подходящий. Здесь мы рассмотрим и сравним два метода минимизации многомерных функций.
Необходимо ввести некоторые понятия.
Необходимо ввести некоторые понятия.
-
Если минимизируемая функция дважд непрерывно дифференцируема и производные <tex>J'(u), J''(u)</tex> просто вычисляются, то можно применять методы минимизации второго порядка, которые используют квадратичную часть разложения функции в ряд Тейлора. Поскольку квадратичная часть разложения аппроксимирует функцию гораздо точнее, чем линейная, то естесвенно ожидать, что методы второго порядка сходятся быстрее, чем методы первого. Метод Ньютона имеет квадратичную скорость сходимости на классе сильно выпуклых функций.
+
Если минимизируемая функция дважды непрерывно дифференцируема и производные <tex>J'(u), J''(u)</tex> просто вычисляются, то можно применять методы минимизации второго порядка, которые используют квадратичную часть разложения функции в ряд Тейлора. Поскольку квадратичная часть разложения аппроксимирует функцию гораздо точнее, чем линейная, то естесвенно ожидать, что методы второго порядка сходятся быстрее, чем методы первого. Метод Ньютона имеет квадратичную скорость сходимости на классе сильно выпуклых функций.
Говорят, что последовательность <tex>{u_k}</tex>сходитcz к <tex>u_*</tex> с линейной скоростью или со скоростью геометрической прогресси (со знаменателем q), если начиная с некоторго номера, выполняется неравенство <tex>|u_{k+1}-u_*|<q|u_k-u_*| (0<q<1);</tex> при выполнении неравенства <tex>|u_{k+1}-u_*|<q_k|u_k-u_*|</tex>, где <tex>{q_k}->0</tex>, говорят о сверхлинейной скорости сходимости последованояти <tex>{u_k}</tex> к <tex>u_*</tex>, а если здесь <tex>q_k=C|u_k-u_*|^{s-1}</tex>, т. е. <tex>|u_{k+1}-u_*|<C|u_k-u_*|^s</tex>, то говорят о скорости сходимсоти порядка s. При s=2, говорят о квадратичной скорости сходимости.
Говорят, что последовательность <tex>{u_k}</tex>сходитcz к <tex>u_*</tex> с линейной скоростью или со скоростью геометрической прогресси (со знаменателем q), если начиная с некоторго номера, выполняется неравенство <tex>|u_{k+1}-u_*|<q|u_k-u_*| (0<q<1);</tex> при выполнении неравенства <tex>|u_{k+1}-u_*|<q_k|u_k-u_*|</tex>, где <tex>{q_k}->0</tex>, говорят о сверхлинейной скорости сходимости последованояти <tex>{u_k}</tex> к <tex>u_*</tex>, а если здесь <tex>q_k=C|u_k-u_*|^{s-1}</tex>, т. е. <tex>|u_{k+1}-u_*|<C|u_k-u_*|^s</tex>, то говорят о скорости сходимсоти порядка s. При s=2, говорят о квадратичной скорости сходимости.

Версия 17:11, 17 декабря 2008

Содержание

Введение

Часто приходится искать методы для решения задач оптимизации, а когда нашли много методов выбирать подходящий. Здесь мы рассмотрим и сравним два метода минимизации многомерных функций. Необходимо ввести некоторые понятия. Если минимизируемая функция дважды непрерывно дифференцируема и производные J'(u), J''(u) просто вычисляются, то можно применять методы минимизации второго порядка, которые используют квадратичную часть разложения функции в ряд Тейлора. Поскольку квадратичная часть разложения аппроксимирует функцию гораздо точнее, чем линейная, то естесвенно ожидать, что методы второго порядка сходятся быстрее, чем методы первого. Метод Ньютона имеет квадратичную скорость сходимости на классе сильно выпуклых функций. Говорят, что последовательность {u_k}сходитcz к u_* с линейной скоростью или со скоростью геометрической прогресси (со знаменателем q), если начиная с некоторго номера, выполняется неравенство |u_{k+1}-u_*|<q|u_k-u_*| (0<q<1); при выполнении неравенства |u_{k+1}-u_*|<q_k|u_k-u_*|, где {q_k}->0, говорят о сверхлинейной скорости сходимости последованояти {u_k} к u_*, а если здесь q_k=C|u_k-u_*|^{s-1}, т. е. |u_{k+1}-u_*|<C|u_k-u_*|^s, то говорят о скорости сходимсоти порядка s. При s=2, говорят о квадратичной скорости сходимости.

Метод Ньютона

Рассмотирим метод Ньютона для задачи

( 1 )

 J(u)-> \inf; u \in U, где J(u) _in C^2(U), U - выпуклое замкнутое множество из E^n. Пусть u_0∈U - некоторое начальное приближение. Если известно k-е приближение u_k, то приращение функции J(u)∈ C^2(U) в точек u_k можно представить в виде

J(u)-J(u_k)=<J'(u_k),u-u_k>+1/2*<J''(u_k)(u-u_k),u-u_k>+o(|u-u_k|^2)

Возьмем квадратичную часть этого приращения

( 2 )

 J_k(u)=<J'(u_k),u-u_k>+1/2*<J''(u_k)(u-u_k),u-u_k>

и определим вспомогательное приближение u_k из условий

( 3 )

u_k \in U, J_k(u_k)=\inf_U J_k(u).

Следущее (k+1)-e приближение будем искать в виде

( 4 )

u_{k+1}=u_k+\alpha_k(\overline{u_k}-u_k), 0<\alpha_k<1.

В зависимости от способа выбора величины \alpha_k в (4) можно получить различные варианты метода Ньютона. Укажем наиболее употребительный способ выбора \alpha_k. \alpha_k=1

( 5 )

\alpha_k=1, k=0,1,\dots Тогда u_{k+1}=\overline{u_k} (k=0,1,\dots), т. е. условие (3) сразу определяет следующее (k+1)-е приближение. Иначе говоря,

( 6 )

 u_{k+1}\in U,  J_k(u_{k+1})=\inf\limits_U J_k(u),  k=0,1,\dots

В часности, когда U=E^n, в точке минимума функции J_k(u) ее производная J'_k(u) обращается в нуль. Таким образом, получаем систему линейных уровнений относительно u_{k+1}-u_k, которую необходимо решать на каждой итерации.

( 7 )

 J'_k(u_{k+1})=J'(u_k)+J''(u_k)(u_{k+1}-u_k)=0.

Если матрица J''(u_k) невырожденная, то имеем

( 8 )

 u_{k+1}=u_k-(J''(u_k))^{-1}J'(u_k),  k=0,1,\dots


Метод СтеФфенсена

В методе Ньютона необходимо на каждой итерации вычислять матрицу вторых производных. Поэтому, когда вычисление матрицы вторых производных требует больших объемов вычислений, трудоемкость каждой итерации значительно возрастает. Таким образом, требуется метод, который может обойти эту проблему. Одним из таких методов является метод СтеФфенсена, который является разностным аналогом метода Ньютона. Матрица вторых производных заменяется разностным отношением первых производных градиента по специальным узловым точкам. Применим этот метод к решению следущей системы уравнений: J'(u)=[J_{u^1},\ldots,J_{u^n}(u)]=0, получим следущий итерационный метод решения задачи минимизации

( 1)

J(u)->\inf, u \in U=E^n.

Если приближение u_k (k\ge 0) уже известно, то следущее приближение u_{k+1} определяется так:

( 2)

u_{k+1}=u_k-(J'(u_k,u_k-\beta_kJ'(u_k)))^{-1}J'(u_k),  k=0, 1, \ldots,

где \beta_k - числовой параметр, J'(u,v)={J_{ij}(u,v)} - матрица разделенных разностей первых производных, определяемая по правилу:

u^j\ne v^j  :   \frac{J_{u^i}(v^1,\ldots,v^{j-1},u^j,u^{j+1},\ldots,u^n)-J_{u^i}(v^1,\ldots,v^{j-1},v^j,u^{j+1},\ldots,u^n)}{u^j-v^j} , u^j=v^j   :   J_{u^i u^j}(v^1,\ldots,v^{j-1},v^j,u^{j+1},\ldots,u^n) ,

где J_{ij}(u,v) - элемент i-й строки j-го столбца матрицы J'(u,v) J_{u^i}(u), J_{u^i u^j}(u) , как и выше, обозначает первые и, соответственно, вторые производные по переменным u^i, u^j функции J(u) (i,j=1,...,n). J(u) дважды непрервыно дифференцируема.

Числовой пример

Программная реализация


Реализация метода Стефенсена

Список литературы

  • Ф.П.Васильев.  Численные методы решения экстремальных задач. Наука 1988г.
Личные инструменты