Участник:Айнагуль Джумабекова/Песочница
Материал из MachineLearning.
| Строка 1: | Строка 1: | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
== Введение ==  | == Введение ==  | ||
=== Постановка математической задачи ===  | === Постановка математической задачи ===  | ||
| Строка 33: | Строка 21: | ||
Это выражение можно принять за приближенное значение <tex>u'(x)</tex> в любой точке <tex>x</tex>∈ <tex>[x_{i-1},x_{i+1}]</tex>.   | Это выражение можно принять за приближенное значение <tex>u'(x)</tex> в любой точке <tex>x</tex>∈ <tex>[x_{i-1},x_{i+1}]</tex>.   | ||
Его удобнее записать в виде  | Его удобнее записать в виде  | ||
| - | <tex> L_{2,i}'(x)=\frac {1}{\bar{h_i}}[(x-  | + | <tex> L_{2,i}'(x)=\frac {1}{\bar{h_i}}[(x-x_{i-\frac{1}{2}}) \frac{u_{i+1}-u_i}{h_{i+1}} + (x_{i+\frac{1}{2}}-x) \frac{u_i-u_{i-1}}{h_i}]</tex> , где  | 
<tex>\bar{h_i}=0,5(h_i+h_{i+1})</tex>, <tex>x_{i-\frac{1}{2}}=x_i-0,5h_i</tex>.  | <tex>\bar{h_i}=0,5(h_i+h_{i+1})</tex>, <tex>x_{i-\frac{1}{2}}=x_i-0,5h_i</tex>.  | ||
| Строка 50: | Строка 38: | ||
где <tex>k=0</tex>,±<tex>1,h=max\{h_i,h_{i+1}\}</tex>  | где <tex>k=0</tex>,±<tex>1,h=max\{h_i,h_{i+1}\}</tex>  | ||
| + | |||
Отсюда приходим к следующим разложениям разностных отношений  | Отсюда приходим к следующим разложениям разностных отношений  | ||
| + | |||
| + | <tex>\frac{u_i-u_{i-1}}{h_i}=u'(x)-(x-x_{i-\frac{1}{2}})u''(x)+(\frac{{(x-x_{i-\frac{1}{2}})}^2}{2}+\frac{h_i^2}{24})u'''(x)+O(h^3)</tex>  | ||
| + | |||
| + | <tex>\frac{u_{i+1}-u_i}{h_{i+1}}=u'(x)-(x_{i+\frac{1}{2}}-x)u''(x)+(\frac{{(x_{i+\frac{1}{2}}-x)}^2}{2}+\frac{h_{i+1}^2}{24})u'''(x)+O(h^3)</tex>  | ||
| + | |||
| + | Подставляя полученные формулы в выражение для разностной производной и приводя подобные слагаемые получим  | ||
| + | |||
| + | <tex>L_{2,i}'(x)=u'(x)-[\frac{{(x-x_i)}^2}{2}-\frac{(h_{i+1}-h_i)(x-x_i)}{3}-\frac{h_ih_{i+1}}{6}]u'''(x)+O(h^3)</tex>, <tex>x</tex>∈ <tex>[x_{i-1},x_{i+1}]</tex>.  | ||
| + | |||
| + | Отсюда видно,что разностное выражение аппроксимирует <tex>u'(x)</tex> со вторым порядком.  | ||
| + | |||
| + | Если подставить полученные ранее разностные отношения в выражение для второй производной многочлена <tex>L_{2,i}(x)</tex>, то имеем   | ||
| + | |||
| + | <tex>L_{2,i}''(x)=u''(x)+(x_i-x + \frac{h_{i+1}-h_i}{3})u'''(x)+O(h^2)</tex>  | ||
| + | |||
| + | Из этого выражения видно, что даже на равномерной сетке,т.е. когда <tex>h_i=h_{i+1}</tex>, второй порядок аппроксимации имеет место лишь в точке <tex>x=x_i</tex>, а относительно других точек (например,<tex>x=x_{i+1}</tex>) выполняется  аппроксимация только первого порядка.  | ||
| + | Таким образом, получим аппроксимацию лишь первого порядка.  | ||
Версия 19:36, 17 декабря 2008
Содержание | 
Введение
Постановка математической задачи
Численное дифференцирование применяется, если функцию  трудно или невозможно продифференцировать аналитически - например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
Изложение метода
При численном дифференцировании функцию  аппроксимируют легко вычисляемой функцией 
  и приближенно полагают 
. При этом можно использовать различные способы аппроксимации.
Интерполирование полиномами Лагранжа
Рассмотрим неравномерную сетку 
и обозначим за 
, 
 шаги этой сетки. В качества примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа 
, построенного для функции 
 по трем точкам 
. 
Многочлен 
 имеет вид 
Отсюда получим
Это выражение можно принять за приближенное значение  в любой точке 
∈ 
. 
Его удобнее записать в виде
 , где
, 
.
В частности, при  получим
,
И если сетка равномерна, 
, то приходим к центральной разностной производной, 
.
При использовании интерполяционного многочлена первой степени точно таким образом можно получить односторонние разностные производные 
 и 
.
Далее вычисляя вторую производную многочлена 
, получим приближенное выражение для 
 при 
∈
:
≈
На равномерной сетке это выражение совпадает со второй разностной производной . Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена 
, надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.
Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене   выражением 
. Будем считать, что 
∈ 
 и что величины 
  имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности 
 получим
,
где ,±
Отсюда приходим к следующим разложениям разностных отношений
Подставляя полученные формулы в выражение для разностной производной и приводя подобные слагаемые получим
, 
∈ 
.
Отсюда видно,что разностное выражение аппроксимирует  со вторым порядком.
Если подставить полученные ранее разностные отношения в выражение для второй производной многочлена , то имеем 
Из этого выражения видно, что даже на равномерной сетке,т.е. когда , второй порядок аппроксимации имеет место лишь в точке 
, а относительно других точек (например,
) выполняется  аппроксимация только первого порядка.
Таким образом, получим аппроксимацию лишь первого порядка.

