Критерий Зигеля-Тьюки
Материал из MachineLearning.
(Различия между версиями)
(→Описание критерия) |
|||
Строка 4: | Строка 4: | ||
==Описание критерия== | ==Описание критерия== | ||
Даны две выборки: <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>. | Даны две выборки: <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>. | ||
- | Через <tex>H_0</tex> обозначим гипотезу | + | Через <tex>H_0</tex> обозначим следующую гипотезу: <tex>\mathbb{P}\{x<y\}=\frac12</tex>. |
Составим объединённую упорядоченную выборку | Составим объединённую упорядоченную выборку | ||
::<tex>z_1,z_2,\dots,z_{m+n}</tex> | ::<tex>z_1,z_2,\dots,z_{m+n}</tex> | ||
Строка 11: | Строка 11: | ||
т.е. оставшийся ряд "переворачивается" после приписывания рангов очередной паре крайних значений. | т.е. оставшийся ряд "переворачивается" после приписывания рангов очередной паре крайних значений. | ||
Ранги, присвоенные в этой последовательности элементам проверяемых выборок, обозначим через <tex>r(x_i), r(y_j)</tex>. | Ранги, присвоенные в этой последовательности элементам проверяемых выборок, обозначим через <tex>r(x_i), r(y_j)</tex>. | ||
- | Вычислим теперь статистику Манна-Уитни | + | Вычислим теперь статистику Манна-Уитни: |
::<tex>R_x = \sum_{i=1}^m r(x_i);\;\;\;\; U_x = mn + \frac12m(m+1) - R_x;</tex> | ::<tex>R_x = \sum_{i=1}^m r(x_i);\;\;\;\; U_x = mn + \frac12m(m+1) - R_x;</tex> | ||
::<tex>R_y = \sum_{i=1}^n r(y_i);\;\;\;\; U_y = mn + \frac12n(n+1) - R_y;</tex> | ::<tex>R_y = \sum_{i=1}^n r(y_i);\;\;\;\; U_y = mn + \frac12n(n+1) - R_y;</tex> | ||
+ | ::<tex>U = \min\left\{U_x,U_y\right\}.</tex>. | ||
+ | Гипотеза <tex>H_0</tex> принимается, если <tex>U \notin \left[ U_{\alpha/2},\, U_{1-\alpha/2} \right] </tex>, | ||
+ | где U_{\alpha} есть <tex>\alpha</tex>-квантиль табличного распределения Уилкоксона-Манна-Уитни с параметрами <tex>m,\,n<\tex>. | ||
==Литература== | ==Литература== |
Версия 19:21, 4 января 2009
Критерий Зигеля-Тьюки является ранговым критерием, предназначенным для проверки принадлежности двух независимых выборок к общей генеральной совокупности с одинаковыми характеристиками рассеяния.
Описание критерия
Даны две выборки: . Через обозначим следующую гипотезу: . Составим объединённую упорядоченную выборку
и составим из неё новую последовательность вида
- ,
т.е. оставшийся ряд "переворачивается" после приписывания рангов очередной паре крайних значений. Ранги, присвоенные в этой последовательности элементам проверяемых выборок, обозначим через . Вычислим теперь статистику Манна-Уитни:
- .
Гипотеза принимается, если , где U_{\alpha} есть -квантиль табличного распределения Уилкоксона-Манна-Уитни с параметрами