Ковариационный анализ

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: Скоро здесь будет статья!)
Строка 1: Строка 1:
-
Скоро здесь будет статья!
+
'''Ковариационный анализ''' - совокупность методов математической статистики, относящихся к анализу моделей зависимости среднего значения некоторой случайной величины <tex>Y</tex> одновременно от набора количественных факторов <tex>X</tex> и неколичественных факторов <tex>F</tex>. По отношению к <tex>Y</tex> переменные <tex>X</tex> называются сопутствующими. Факторы <tex>F</tex> задают сочетания условий качественной природы, при которых были получены наблюдения <tex>Y</tex> и <tex>X</tex>, и описываются с помощью так называемых индикаторных переменных, причем среди сопутствующих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте).
 +
 
 +
Если случайная величина <tex>Y</tex> является вектором, то говорят о ''многомерном ковариационном анализе''.
 +
== Постановка задачи ==
 +
Основные теоретические и прикладные проблемы ковариационного анализа относятся к линейным моделям. В частности, если анализируются <tex>n</tex> наблюдений <tex>Y_1,...,Y_n</tex> с <tex>p</tex> сопутствующими переменными <tex>(X=(x^{(1)},...,x^{(p)}))</tex>, <tex>k</tex> возможными типами условий эксперимента <tex>(F=(f_1,...,f_k))</tex>, то линейная модель соответствующего ковариационного анализа задается уравнением:
 +
::<tex>Y_i=\sum\limits_{j=1}^k{f_{ij}\theta_j} + \sum\limits_{j=1}^p{\beta_s(f_i)x_i^{(1)} + \eps_i(f_i)}</tex>
 +
где <tex>i=1,...,n</tex>, индикаторные переменные <tex>f_{ij}</tex> равны 1, если j-е условие эксперимента имело место при наблюдении <tex>Y_i</tex>, и равны 0 в противном случае. Коэффициенты <tex>\theta_j</tex> определяют эффект влияния j-го условия, <tex>x_i^s</tex> - значение сопутствующей переменной <tex>x^{(s)}</tex>, при котором получено наблюдение <tex>Y_i</tex>. <tex>\beta_s(f_i)</tex> - значения соответствующих коэффициентов регрессии <tex>Y</tex> по <tex>x^{(s)}</tex>, <tex>\eps_i(f_i)</tex> - случайные ошибки с нулевым математическим ожиданием.
 +
 
 +
Основное назначение ковариационного анализа - использование в построении статистических оценок <tex>\theta_1,...,\theta_k</tex>; <tex>\beta_1,...,\beta_p</tex> и статистических критериев для проверки различных гипотез относительно значений этих параметров. Если в модели постулировать априори <tex>\beta_1=...=\beta_p=0</tex>, то получится модель ''дисперсионного анализа'', если же исключить влияние неколичественных факторов (положить <tex>\theta_1=...=\theta_k=0</tex>), то получится модель регрессионного анализа.
 +
 
 +
== Литература ==
 +
# ''Кендалл М.Дж., Стьюарт А.'' Многомерный статистический анализ и временные ряды. — М., 1976.
 +
# ''Шеффе Г.'' Дисперсионный анализ. — М., 1980.
 +
 
 +
[[Категория:Дисперсионный анализ]]

Версия 16:32, 9 января 2009

Ковариационный анализ - совокупность методов математической статистики, относящихся к анализу моделей зависимости среднего значения некоторой случайной величины Y одновременно от набора количественных факторов X и неколичественных факторов F. По отношению к Y переменные X называются сопутствующими. Факторы F задают сочетания условий качественной природы, при которых были получены наблюдения Y и X, и описываются с помощью так называемых индикаторных переменных, причем среди сопутствующих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте).

Если случайная величина Y является вектором, то говорят о многомерном ковариационном анализе.

Постановка задачи

Основные теоретические и прикладные проблемы ковариационного анализа относятся к линейным моделям. В частности, если анализируются n наблюдений Y_1,...,Y_n с p сопутствующими переменными (X=(x^{(1)},...,x^{(p)})), k возможными типами условий эксперимента (F=(f_1,...,f_k)), то линейная модель соответствующего ковариационного анализа задается уравнением:

Y_i=\sum\limits_{j=1}^k{f_{ij}\theta_j} + \sum\limits_{j=1}^p{\beta_s(f_i)x_i^{(1)} + \eps_i(f_i)}

где i=1,...,n, индикаторные переменные f_{ij} равны 1, если j-е условие эксперимента имело место при наблюдении Y_i, и равны 0 в противном случае. Коэффициенты \theta_j определяют эффект влияния j-го условия, x_i^s - значение сопутствующей переменной x^{(s)}, при котором получено наблюдение Y_i. \beta_s(f_i) - значения соответствующих коэффициентов регрессии Y по x^{(s)}, \eps_i(f_i) - случайные ошибки с нулевым математическим ожиданием.

Основное назначение ковариационного анализа - использование в построении статистических оценок \theta_1,...,\theta_k; \beta_1,...,\beta_p и статистических критериев для проверки различных гипотез относительно значений этих параметров. Если в модели постулировать априори \beta_1=...=\beta_p=0, то получится модель дисперсионного анализа, если же исключить влияние неколичественных факторов (положить \theta_1=...=\theta_k=0), то получится модель регрессионного анализа.

Литература

  1. Кендалл М.Дж., Стьюарт А. Многомерный статистический анализ и временные ряды. — М., 1976.
  2. Шеффе Г. Дисперсионный анализ. — М., 1980.
Личные инструменты