Автокорреляционная функция

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 4: Строка 4:
=== Определение ===
=== Определение ===
 +
[[Изображение:Autocorrelation.png|thumb|right|300px|На графиках представлена коррелограмма сигнала и собственно сигнал. Коррелограмма проявляет неочевидные периодические составляющие сигнала.]]
В [[Статистика|статистике]] автокорреляция [[Случайный процесс|случайного процесса]] описывает [[корреляция|корреляцию]] между значениями процесса в различные моменты времени. Пусть <tex>X_t</tex> - значение случайного процесса в момент времени <tex>t</tex> (<tex>t</tex> может быть вещественным, если процесс непрервыный, или целым, если процесс дискретный). Если <tex>X_t</tex> имеет среднее значение <tex>\mu_t</tex> и дисперсию <tex>\omega _t^2</tex>, то автокорреляция <tex>X_t</tex> определяется следующим образом:
В [[Статистика|статистике]] автокорреляция [[Случайный процесс|случайного процесса]] описывает [[корреляция|корреляцию]] между значениями процесса в различные моменты времени. Пусть <tex>X_t</tex> - значение случайного процесса в момент времени <tex>t</tex> (<tex>t</tex> может быть вещественным, если процесс непрервыный, или целым, если процесс дискретный). Если <tex>X_t</tex> имеет среднее значение <tex>\mu_t</tex> и дисперсию <tex>\omega _t^2</tex>, то автокорреляция <tex>X_t</tex> определяется следующим образом:
Строка 21: Строка 22:
График автокорреляций выборки в зависиости от сдвига называется [[Коррелограмма|коррелограммой]].
График автокорреляций выборки в зависиости от сдвига называется [[Коррелограмма|коррелограммой]].
 +
 +
== Свойства ==

Версия 14:31, 10 января 2009

Автокорреляционная функция - это характеристика сигнала, которая помогает находить повторяющиеся участки сигнала или определять несущую частоту сигнала, скрытую из-за наложений шума и колебаний на других частотах. Автокорреляционная функция часто используется в обработке сигналов и анализе временных рядов.

Неформально автокорреляционная функция - это сходство между значениями сигнала как функция от разницы во времени между ними.

Определение

На графиках представлена коррелограмма сигнала и собственно сигнал. Коррелограмма проявляет неочевидные периодические составляющие сигнала.
На графиках представлена коррелограмма сигнала и собственно сигнал. Коррелограмма проявляет неочевидные периодические составляющие сигнала.

В статистике автокорреляция случайного процесса описывает корреляцию между значениями процесса в различные моменты времени. Пусть X_t - значение случайного процесса в момент времени t (t может быть вещественным, если процесс непрервыный, или целым, если процесс дискретный). Если X_t имеет среднее значение \mu_t и дисперсию \omega _t^2, то автокорреляция X_t определяется следующим образом:


R(t,s) = \frac{\operatorname{E}[(X_t - \mu_t)(X_s - \mu_s)]}{\sigma_t\sigma_s}
,

где "E" - это математическое ожидание. Заметим, что это определение не всегда корректно, так как знаменятель дроби может обращаться в нуль (для процессов-констант) или в бесконечность. Если же это выражение корректно, то его значение лежит в интервале [−1, 1], причем 1 оно принимает в случае полного совпадения, а −1 - в случае, если корреляции не наблюдается.

Для дискретного процесса длиной n {X_1, X_2, \dots , X_n} с известными матожиданием и дисперсией автокорреляцию можно рассчитывать по следующей формуле:


\hat{R}(k)=\frac{1}{(n-k) \sigma^2} \sum_{t=1}^{n-k} [X_t-\mu][X_{t+k}-\mu]

для любых положительных целых k и n.

График автокорреляций выборки в зависиости от сдвига называется коррелограммой.

Свойства

Личные инструменты