Ридж-регрессия
Материал из MachineLearning.
(переработка) |
|||
Строка 12: | Строка 12: | ||
==Описание метода== | ==Описание метода== | ||
- | === | + | ===Дополнительное определение=== |
Пусть <tex>\Sigma=X^T X</tex>. | Пусть <tex>\Sigma=X^T X</tex>. | ||
Строка 27: | Строка 27: | ||
где <tex>\tau</tex> - коэффициент регуляризации. | где <tex>\tau</tex> - коэффициент регуляризации. | ||
- | МНК (регуляризованное) решение | + | МНК (регуляризованное) решение получается таким |
<tex>\hat{Q}_\tau=(X^T X+\tau I_k)^{-1}X^T y</tex> | <tex>\hat{Q}_\tau=(X^T X+\tau I_k)^{-1}X^T y</tex> | ||
- | |||
- | <tex>X^T | + | У матриц <tex>X^T X</tex> и <tex>(X^X+\tau I_k)</tex> собственные вектора совпадают, а собственным значением различаются на <tex>\tau</tex>. Поэтому |
+ | число обусловленности для матрицы <tex>X^T X+\tau I</tex> равно | ||
- | + | <tex>\mu(X^T X+\tau I)=\frac{\lambda_{max}+\tau}{\lambda_{min}+\tau}</tex>. | |
- | <tex> | + | Получается, что чем больше <tex>\tau</tex>, тем меньше число обусловленности. С ростом <tex>\tau</tex> возрастает устойчивость задачи. |
- | + | При сингулярном разложении получаем. | |
- | + | <tex>||\hat{Q}||^2=\sum_{j=1}^k \frac{1}{\lambda_j}(v_j^T y)^2</tex> | |
+ | |||
+ | <tex>||\hat{Q}_\tau||^2=\sum_{j=1}^k \frac{1}{\lambda_j+\tau}(v_j^T y)^2</tex> | ||
+ | |||
+ | Они различаются только на сомножитель. | ||
+ | |||
+ | Происходит сжатие коэффициентов (shrinkage). Понижается эффективная размерность, хотя количество признаков остаётся прежним. | ||
+ | |||
+ | Число признаков измеряется по формуле | ||
+ | |||
+ | <tex>tr X(X^T X)^{-1} X^T=tr I_k=k</tex> | ||
+ | |||
+ | После модификации число признаков становится равным | ||
+ | |||
+ | <tex>tr X(X^T X+\tau I)^{-1} X^T=tr diag(\frac{\lambda_j}{\lambda_j+\tau}=\sum_{j=1}^{k}\frac{\lambda_j}{\lambda_j+\tau}</tex>, | ||
+ | |||
+ | а это меньше <tex>k</tex>. Поэтому чем больше <tex>\tau</tex>, тем мень эффективная размерность. | ||
- | |||
- | |||
Строка 68: | Строка 82: | ||
== Ссылки == | == Ссылки == | ||
- | + | [http://en.wikipedia.org/wiki/Ridge_regression Ridge regression] | |
[[Категория: Прикладная статистика]][[Категория:Регрессионные модели]] | [[Категория: Прикладная статистика]][[Категория:Регрессионные модели]] | ||
- |
Версия 23:10, 11 января 2009
Ридж-регрессия или гребневая регрессия (англ. ridge regression) - это один из методов понижения размерности. Часто его применяют для борьбы с переизбыточностью данных, когда независимые переменные коррелируют друг с другом (т.е. имеет место мультиколлинеарность). Следствием этого является плохая обусловленность матрицы и неустойчивость оценок коэффициентов регрессии. Оценки, например, могут иметь неправильный знак или значения, которые намного превосходят те, которые приемлемы из физических или практических соображений.
Метод стоит использовать, если:
- сильная обусловленность;
- сильно различаются собственные значения или некоторые из них близки к нулю;
- в матрице есть пости линено зависимые столбцы.
Содержание |
Пример задачи
Предположим признаки в задаче были плохо отбранны экспертами в присутствуют данные о длине, выраженные с сантиметрах и дюймах. Легко видеть, что эти данные линейно зависимы.
Описание метода
Дополнительное определение
Пусть .
Число обусловленности равно ,
где собственные значения .
Гребневая регрессия
Вводится модифицированный функционал
где - коэффициент регуляризации.
МНК (регуляризованное) решение получается таким
У матриц и собственные вектора совпадают, а собственным значением различаются на . Поэтому
число обусловленности для матрицы равно
.
Получается, что чем больше , тем меньше число обусловленности. С ростом возрастает устойчивость задачи.
При сингулярном разложении получаем.
Они различаются только на сомножитель.
Происходит сжатие коэффициентов (shrinkage). Понижается эффективная размерность, хотя количество признаков остаётся прежним.
Число признаков измеряется по формуле
После модификации число признаков становится равным
,
а это меньше . Поэтому чем больше , тем мень эффективная размерность.
Литература
- Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — С. 912. — ISBN 0-471-17082-8