Критерий Колмогорова-Смирнова
Материал из MachineLearning.
(→Использование критерия для проверки нормальности) |
(→Использование критерия для проверки нормальности) |
||
Строка 22: | Строка 22: | ||
При помощи критерия Колмогорова-Смирнова определяется, описывает ли заданная функция наблюдаемое распределение <tex>X</tex>, | При помощи критерия Колмогорова-Смирнова определяется, описывает ли заданная функция наблюдаемое распределение <tex>X</tex>, | ||
в то время как для проверки нормальности требуется выяснить, принадлежит ли функция распределения величины <tex>X</tex> параметрическому семейству функций. | в то время как для проверки нормальности требуется выяснить, принадлежит ли функция распределения величины <tex>X</tex> параметрическому семейству функций. | ||
- | + | Возможный способ решения заключается в использовании выборочных оценок среднего и дисперсии. | |
- | ::<tex> | + | Однако в этом случае следует использовать модифицированное значение статистики |
- | + | ::<tex>D_n^*=D_n(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}})</tex>. | |
- | + | ||
==Литература== | ==Литература== |
Версия 12:26, 11 января 2009
Критерий Колмогорова-Смирнова используется для проверки гипотезы : "случайная величина имеет распределение ".
Содержание |
Примеры задач
Критерий Колмогорова-Смирнова уместно применять в тех случаях, когда нужно проверить, подчиняется ли наблюдаемая случайная величина некоторому закону распределения, известному с точностью до параметров. Например, все исходы, выдаваемые рулеткой казино, должны быть равновероятны. Предположим, требуется выяснить, можно ли считать некоторую рулетку "честной". Для этого следует составить достаточно большую выборку из исходов этой рулетки. Чтобы установить, является ли выборка равномерно распределённой, можно воспользоваться критерием Колмогорова-Смирнова.
Описание критерия
Пусть - выборка независимых одинаково распределённых случайных величин, - эмпирическая функция распределения, - некоторая фиксированная "истинная" функция распределения. Тогда статистика критерия определяется следующим образом:
Обозначим через гипотезу о том, что выборка подчиняется распределению . Тогда по теореме Колмогорова для введённой статистики справедливо:
Гипотеза отвергается, если статистика превышает квантиль распределения заданного уровня значимости , и принимается в противном случае.
Использование критерия для проверки нормальности
При помощи критерия Колмогорова-Смирнова определяется, описывает ли заданная функция наблюдаемое распределение , в то время как для проверки нормальности требуется выяснить, принадлежит ли функция распределения величины параметрическому семейству функций. Возможный способ решения заключается в использовании выборочных оценок среднего и дисперсии. Однако в этом случае следует использовать модифицированное значение статистики
- .
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
- Kolmogorov А. N. Confidence limits for an unknown distribution function // AMS. 1941. V. 12. P. 461-463.
- Смирнов Н. В. Оценка расхождения между эмпирическими кривыми распределений в двух независимых выборках // Бюллетень МГУ. Сер. А. Вып. 2. 1939. С. 13—14.
См. также
Ссылки
- Критерий согласия Колмогорова(википедия)