Участник:A m0r0z0v
Материал из MachineLearning.
(Новая: Морозов Алексей Олегович <br /> Группа 274 <br /> ao.morozov@phystech.edu) |
|||
Строка 1: | Строка 1: | ||
- | Морозов Алексей Олегович | + | '''Морозов Алексей Олегович''' |
- | + | ||
- | ao.morozov@phystech.edu | + | '''МФТИ, ФУПМ''' |
+ | |||
+ | Кафедра "'''Интеллектуальные системы'''" | ||
+ | |||
+ | Направление "'''Интеллектуальный анализ данных'''" | ||
+ | |||
+ | Mailto: ao.morozov@phystech.edu | ||
+ | |||
+ | == Отчеты о научно-исследовательской работе == | ||
+ | |||
+ | === Весна 2019=== | ||
+ | '''Алгоритмическая реализация восстановления зависимостей произвольного вида в больших массивах данных''' | ||
+ | |||
+ | ''Исследован класс обобщенных линейных моделей зависимостей, включающий модели числовой регрессии и двухклассового распознавания образов в типичной для практики ситуации, когда вектор признаков объектов имеет очень большую размерность, а число объектов в обучающей совокупности относительно невелико. Установлено, что вычислительная сложность таких задач линейна по числу признаков и полиномиальна по размеру обучающей совокупности.'' | ||
+ | |||
+ | '''Публикация''' | ||
+ | *{{биб.статья | ||
+ | |автор = Vadim Mottl, Olga Krasotkina, Valentina Sulimova, Alexey Morozov, Ilya Pugach, Alexander Tatarchuk | ||
+ | |заглавие = Linear complexity algorithms for high dimensional SVM and regression problems with smart sparse regularization | ||
+ | <!--|издание = Машинное обучение и анализ данных--> | ||
+ | |год = 2019 | ||
+ | <!--|номер = 3 | ||
+ | |ISSN = 2223-3792 | ||
+ | |страницы = 272-278--> | ||
+ | |url = https://1drv.ms/b/s!AnZjwd6l7_VahLZBo1TYNH33cSIDmg | ||
+ | }} | ||
+ | [https://1drv.ms/b/s!AnZjwd6l7_VahLZBo1TYNH33cSIDmg Ссылка на статью] | ||
+ | |||
+ | === Осень 2018=== | ||
+ | '''Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей''' | ||
+ | |||
+ | ''Обеспечена линейная вычислительная сложность алгоритма поиска состава портфеля в очень большом множестве всех биржевых активов, в то время, как сложность по относительно небольшому числу наблюдений остается полиномиальной.'' | ||
+ | |||
+ | '''Доклад на научной конференции''' | ||
+ | *{{биб.статья | ||
+ | |автор = Моттль В. В., Красоткина О. В., Морозов А. О., Медведев А. В. | ||
+ | |заглавие = Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей | ||
+ | |издание = Интеллектуализация обработки информации (ИОИ-2018): Тезисы докл.— Москва: Торус Пресс, 2018. С. 104–105. | ||
+ | |url = http://machinelearning.ru/wiki/images/e/e2/IDP18.pdf | ||
+ | }} | ||
+ | [[Media:IOI2018Morozov.pdf | Презентация]] | ||
+ | |||
+ | '''Доклад на научной конференции''' | ||
+ | *{{биб.статья | ||
+ | |автор = Морозов А. О., Моттль В. В. | ||
+ | |заглавие = Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей | ||
+ | |издание = 61-я Всероссийская научная конференция МФТИ: Труды, Прикладная математика и информатика — МФТИ, 2018. С. 116–118. | ||
+ | |url = https://mipt.ru/science/5top100/education/!%D0%A4%D0%9F%D0%9C%D0%98.pdf | ||
+ | }} | ||
+ | [[Media:conf61Morozov.pdf | Тезисы]] |
Версия 09:45, 20 мая 2019
Морозов Алексей Олегович
МФТИ, ФУПМ
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
Mailto: ao.morozov@phystech.edu
Отчеты о научно-исследовательской работе
Весна 2019
Алгоритмическая реализация восстановления зависимостей произвольного вида в больших массивах данных
Исследован класс обобщенных линейных моделей зависимостей, включающий модели числовой регрессии и двухклассового распознавания образов в типичной для практики ситуации, когда вектор признаков объектов имеет очень большую размерность, а число объектов в обучающей совокупности относительно невелико. Установлено, что вычислительная сложность таких задач линейна по числу признаков и полиномиальна по размеру обучающей совокупности.
Публикация
- Vadim Mottl, Olga Krasotkina, Valentina Sulimova, Alexey Morozov, Ilya Pugach, Alexander Tatarchuk Linear complexity algorithms for high dimensional SVM and regression problems with smart sparse regularization. — 2019.
Осень 2018
Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей
Обеспечена линейная вычислительная сложность алгоритма поиска состава портфеля в очень большом множестве всех биржевых активов, в то время, как сложность по относительно небольшому числу наблюдений остается полиномиальной.
Доклад на научной конференции
- Моттль В. В., Красоткина О. В., Морозов А. О., Медведев А. В. Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей // Интеллектуализация обработки информации (ИОИ-2018): Тезисы докл.— Москва: Торус Пресс, 2018. С. 104–105..
Доклад на научной конференции
- Морозов А. О., Моттль В. В. Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей // 61-я Всероссийская научная конференция МФТИ: Труды, Прикладная математика и информатика — МФТИ, 2018. С. 116–118..