Структурные методы анализа изображений и сигналов (курс лекций, А.С. Конушин, Д.П. Ветров, Д.А. Кропотов, О.В. Баринова, В.С. Конушин, 2009)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Марковские сети и дискретная оптимизация)
(Условные случайные поля)
Строка 23: Строка 23:
Энергетическая формулировка задач компьютерного зрения. Разрезы графов, алгоритмы нахождения максимального потока. Интерактивная сегментация изображений. Энергия, которую можно минимизировать с помощью разрезов графов. Многоуровневые разрезы графов. Приближенная минимизация энергии с помощью разрезов графов. Алгоритм, основанный на замене. Примеры минимизируемых энергий. Сегментация видео. Сшивка изображений. Трехмерная реконструкция.
Энергетическая формулировка задач компьютерного зрения. Разрезы графов, алгоритмы нахождения максимального потока. Интерактивная сегментация изображений. Энергия, которую можно минимизировать с помощью разрезов графов. Многоуровневые разрезы графов. Приближенная минимизация энергии с помощью разрезов графов. Алгоритм, основанный на замене. Примеры минимизируемых энергий. Сегментация видео. Сшивка изображений. Трехмерная реконструкция.
-
=== Условные случайные поля ===
+
=== Методы настройки марковских случайных полей ===
-
Понятие условных случайных полей, сравнение их с марковскими полями. Методы вывода и настройки полей. Применение для семантической сегментации изображений, распознавания объектов с учетом контекста и трехмерной реконструкции.
+
Методы обучения в марковских случайных полях. Применение для семантической сегментации изображений, распознавания объектов с учетом контекста и трехмерной реконструкции.
 +
 
 +
Алгоритмы обмена сообщениями. Belief propagation и Loopy beleif propagation.
<u>Часть 2. Графические модели для анализа и распознавания сигналов.</u>
<u>Часть 2. Графические модели для анализа и распознавания сигналов.</u>

Версия 15:28, 14 сентября 2009

Статья в настоящий момент дорабатывается.
Kropotov 18:03, 14 сентября 2009 (MSD)


Содержание

Курс посвящен математическим методам обработки информации, основанных на выделении структуры в исходных данных и ее последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ поведения, распознавание речи, машинное обучение.

Программа курса

Часть 1. Графические модели для анализа изображений.

Введение в курс и понятие графических моделей.

Обзор курса. Задачи анализа структурированных данных. Представление зависимостей между объектами в виде графов. Основные задачи, для решения которых используются графические модели. Демонстрация современных работ, опирающихся на данные в курсе методы.

Напоминание основных понятий, которые будут активно использоваться в следующих лекциях. Основные операции с вероятностями (правило суммы, произведения, формула Байеса). Понятия мат. ожидание и матрицы ковариаций. Нормальное распределение. Независимость событий. Маргинализация (исключение переменной). Метод максимального правдоподобия, МАР-оценивание на примере нормального распределения. Матричная нотация (скалярное произведение, следы матриц, квадратичные формы, дифференцирование по вектору). Правило множителей Лагранжа с ограничениями в виде равенств и неравенств.

Основные графические модели

Байесовские сети. Элементарные способы работы с байесовскими сетями. Марковские сети. Потенциалы на кликах. Примеры использования марковских сетей для анализа изображений. Ликбез: независимость случайных событий. Условная вероятность. Условная независимость.

Марковские сети и дискретная оптимизация

Энергетическая формулировка задач компьютерного зрения. Разрезы графов, алгоритмы нахождения максимального потока. Интерактивная сегментация изображений. Энергия, которую можно минимизировать с помощью разрезов графов. Многоуровневые разрезы графов. Приближенная минимизация энергии с помощью разрезов графов. Алгоритм, основанный на замене. Примеры минимизируемых энергий. Сегментация видео. Сшивка изображений. Трехмерная реконструкция.

Методы настройки марковских случайных полей

Методы обучения в марковских случайных полях. Применение для семантической сегментации изображений, распознавания объектов с учетом контекста и трехмерной реконструкции.

Алгоритмы обмена сообщениями. Belief propagation и Loopy beleif propagation.

Часть 2. Графические модели для анализа и распознавания сигналов.

Скрытые марковские модели

Примеры задач сегментации сигналов. Обучение НММ с учителем, ЕМ-алгоритм и его использование в анализе графических моделей.

Алгоритм Баума-Уэлша для подсчета условного распределения на сегментацию отдельной точки. Обучение НММ без учителя. Особенности численной реализации на ЭВМ. Поиск наиболее вероятной последовательности состояний. Использование априорного распределения на длительность нахождения в заданном состоянии. Модификации НММ (НММ высших порядков, факториальные НММ, многопоточные НММ, НММ ввода-вывода). Применение НММ для анализа поведения, мультимодальное распознавание речи.

Ликбез: динамическое программирование.

Методы фильтрации данных

Линейные динамические системы, фильтр Калмана. Настройка параметров фильтра Калмана. Уравнения Рауса-Тунга-Штрибеля. Пример использования.

Методы Монте Карло с марковскими цепями

Взятие интегралов методами Монте-Карло, голосование по апостериорному распределению вместо точечного решающего правила. Схема Гиббса. Гибридные методы Монте-Карло. Использование методов Монте Карло на примере фильтра частиц.

Использование методов обработки сигналов в задаче множественного трекинга

Задача множественного трекинга лабораторных животных. Определение числа особей в блобе. Алгоритм разделения особей. Идентификация животных и определение ключевых точек.

Часть 3. Методы понижения размерности.

Методы понижения размерности

Метод главных компонент. Вероятностный РСА. Ядровая версия РСА. Анализ независимых компонент. Нелинейное уменьшение размерности. Методы на базе MDL – минимальной длины описания. Активные контура и их применение для сегментации движущихся объектов в видеопотоке. Алгоритмы распознавания лиц на базе методов понижения размерности.

Ликбез: свойства симметричных матриц, положительно определенные матрицы.

Модель активных контуров

Модель активных контуров и примеры ее применения в задачах компьютерного зрения.


Расписание занятий

В 2009 году курс читается по четвергам на факультете ВМиК МГУ, в ауд. 671, начало в 18-00.

ДатаЗанятие
10 сентября 2009Лекция 1
17 сентября 2009Лекция 2
24 сентября 2009Лекция 3
1 октября 2009Лекция 4
8 октября 2009Лекция 5
15 октября 2009Лекция 6
22 октября 2009Лекция 7
29 октября 2009Лекция 8
5 ноября 2009Лекция 9
12 ноября 2009Лекция 10
19 ноября 2009Лекция 11
26 ноября 2009Лекция 12
3 декабря 2009Экзамен

Литература

См. также

Курс «Байесовские методы машинного обучения»

Математические методы прогнозирования (кафедра ВМиК МГУ)

Личные инструменты