Публикация:Gorban (2008), Principal Manifolds
Материал из MachineLearning.
м (→Аннотация: оформление) |
м (оформление) |
||
| Строка 1: | Строка 1: | ||
<includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev (2008), Principal Manifolds for Data Visualisation and Dimension Reduction | <includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev (2008), Principal Manifolds for Data Visualisation and Dimension Reduction | ||
| - | |автор = Gorban, A.N. | + | |автор = Gorban, A.N. |
| - | |автор2 = Kegl, B | + | |автор2 = Kegl, B |
| - | |автор3 = Wunsch, D | + | |автор3 = Wunsch, D |
| - | |автор4 = Zinovyev, A.Y. | + | |автор4 = Zinovyev, A.Y. |
|название = Principal Manifolds for Data Visualisation and Dimension Reduction | |название = Principal Manifolds for Data Visualisation and Dimension Reduction | ||
|издатель = Springer, Berlin – Heidelberg – New York | |издатель = Springer, Berlin – Heidelberg – New York | ||
| Строка 29: | Строка 29: | ||
1 Developments and Applications of Nonlinear Principal Component Analysis – a Review | 1 Developments and Applications of Nonlinear Principal Component Analysis – a Review | ||
| - | Uwe Kruger, Junping Zhang, Lei Xie | + | |
| + | Uwe Kruger, Junping Zhang, Lei Xie | ||
| + | |||
2 Nonlinear Principal Component Analysis: Neural Network Models and Applications | 2 Nonlinear Principal Component Analysis: Neural Network Models and Applications | ||
| - | Matthias Scholz, Martin Fraunholz, Joachim Selbig | + | |
| + | Matthias Scholz, Martin Fraunholz, Joachim Selbig | ||
3 Learning Nonlinear Principal Manifolds by Self-Organising Maps | 3 Learning Nonlinear Principal Manifolds by Self-Organising Maps | ||
| - | Hujun Yin | + | |
| + | Hujun Yin | ||
| + | |||
4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization | 4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization | ||
| - | Alexander N Gorban, Andrei Y Zinovyev | + | |
| + | Alexander N Gorban, Andrei Y Zinovyev | ||
| + | |||
5 Topology-Preserving Mappings for Data Visualisation | 5 Topology-Preserving Mappings for Data Visualisation | ||
| - | Marian PeЇna, Wesam Barbakh, Colin Fyfe | + | |
| + | Marian PeЇna, Wesam Barbakh, Colin Fyfe | ||
| + | |||
6 The Iterative Extraction Approach to Clustering | 6 The Iterative Extraction Approach to Clustering | ||
| - | Boris Mirkin | + | |
| + | Boris Mirkin | ||
| + | |||
7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data | 7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data | ||
| - | Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones | + | |
| + | Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones | ||
| + | |||
8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit | 8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit | ||
| - | Stґephane Girard, Serge Iovleff | + | |
| + | Stґephane Girard, Serge Iovleff | ||
| + | |||
9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes | 9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes | ||
| - | Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev | + | |
| + | Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev | ||
| + | |||
10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms | 10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms | ||
| - | Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis | + | |
| + | Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis | ||
| + | |||
11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics | 11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics | ||
| - | Steven B Damelin | + | |
| + | Steven B Damelin | ||
12 Geometric Optimization Methods for the Analysis of Gene Expression Data | 12 Geometric Optimization Methods for the Analysis of Gene Expression Data | ||
| - | Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre | + | |
| + | Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre | ||
| + | |||
| + | |||
13 Dimensionality Reduction and Microarray data | 13 Dimensionality Reduction and Microarray data | ||
| - | David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer | + | |
| + | David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer | ||
| + | |||
14 PCA and K-Means Decipher Genome | 14 PCA and K-Means Decipher Genome | ||
| - | Alexander N Gorban, Andrei Y Zinovyev | + | |
| + | Alexander N Gorban, Andrei Y Zinovyev | ||
| + | |||
== Ссылки == | == Ссылки == | ||
*[http://pca.narod.ru/ Нелинейный метод главных компонент] | *[http://pca.narod.ru/ Нелинейный метод главных компонент] | ||
*[http://www.springer.com/math/cse/book/978-3-540-73749-0 Principal Manifolds for Data Visualization and Dimension Reduction] | *[http://www.springer.com/math/cse/book/978-3-540-73749-0 Principal Manifolds for Data Visualization and Dimension Reduction] | ||
| - | |||
[[Категория:Машинное обучение (публикации)]] | [[Категория:Машинное обучение (публикации)]] | ||
</noinclude> | </noinclude> | ||
}} | }} | ||
Версия 14:17, 26 сентября 2009
Gorban, A.N. (Ed.), Kegl, B (Ed.), Wunsch, D (Ed.), Zinovyev, A.Y. (Ed.) Principal Manifolds for Data Visualisation and Dimension Reduction. — Springer, Berlin – Heidelberg – New York, 2008. — ISBN 978-3-540-73749-0
| BibTeX: |
@book{NPCA2007,
author = "Gorban, A.N. (Ed.) and Kegl, B (Ed.) and Wunsch, D (Ed.) and Zinovyev, A.Y. (Ed.)",
title = "Principal Manifolds for Data Visualisation and Dimension Reduction",
publisher = "Springer, Berlin – Heidelberg – New York",
year = "2008",
url = "http://pca.narod.ru/contentsgkwz.htm",
isbn = "978-3-540-73749-0",
language = english
}
|
Аннотация
Первая в мировой научной литературе монография, посвященная методу главных многообразий (обобщения Кохоненовских SOM в том числе): Главные многообразия для визуализации и анализа данных, А. Горбань, Б. Кегль, Д. Вунш, А. Зиновьев (ред.), Шпрингер, 2007. Подготовлена международным коллективом авторов.
Contents
1 Developments and Applications of Nonlinear Principal Component Analysis – a Review
Uwe Kruger, Junping Zhang, Lei Xie
2 Nonlinear Principal Component Analysis: Neural Network Models and Applications
Matthias Scholz, Martin Fraunholz, Joachim Selbig
3 Learning Nonlinear Principal Manifolds by Self-Organising Maps
Hujun Yin
4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization
Alexander N Gorban, Andrei Y Zinovyev
5 Topology-Preserving Mappings for Data Visualisation
Marian PeЇna, Wesam Barbakh, Colin Fyfe
6 The Iterative Extraction Approach to Clustering
Boris Mirkin
7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data
Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones
8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit
Stґephane Girard, Serge Iovleff
9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes
Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev
10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms
Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis
11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics
Steven B Damelin
12 Geometric Optimization Methods for the Analysis of Gene Expression Data
Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre
13 Dimensionality Reduction and Microarray data
David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer
14 PCA and K-Means Decipher Genome
Alexander N Gorban, Andrei Y Zinovyev
Ссылки
- Нелинейный метод главных компонент
- Principal Manifolds for Data Visualization and Dimension Reduction
}}

