Публикация:Gorban (2008), Principal Manifolds
Материал из MachineLearning.
| м  (оформление) | м  (оформление) | ||
| Строка 1: | Строка 1: | ||
| <includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev  (2008), Principal Manifolds for Data Visualisation and Dimension Reduction | <includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev  (2008), Principal Manifolds for Data Visualisation and Dimension Reduction | ||
|    |автор = Gorban, A.N.  |    |автор = Gorban, A.N.  | ||
| - |    |автор2 = Kegl, B  | + |    |автор2 = Kegl, B.  | 
| - |    |автор3 = Wunsch, D  | + |    |автор3 = Wunsch, D.  | 
|    |автор4 = Zinovyev, A.Y.  |    |автор4 = Zinovyev, A.Y.  | ||
|    |название = Principal Manifolds for Data Visualisation and Dimension Reduction |    |название = Principal Manifolds for Data Visualisation and Dimension Reduction | ||
| Строка 11: | Строка 11: | ||
|    |язык = english |    |язык = english | ||
| }}</includeonly><noinclude>{{Монография|BibtexKey = NPCA2007 | }}</includeonly><noinclude>{{Монография|BibtexKey = NPCA2007 | ||
| - |    |автор = Gorban, A.N.  | + |    |автор = Gorban, A.N.  | 
| - |    |автор2 = Kegl, B  | + |    |автор2 = Kegl, B.  | 
| - |    |автор3 = Wunsch, D  | + |    |автор3 = Wunsch, D. | 
| - |    |автор4 = Zinovyev, A.Y.  | + |    |автор4 = Zinovyev, A.Y.  | 
|    |название = Principal Manifolds for Data Visualisation and Dimension Reduction |    |название = Principal Manifolds for Data Visualisation and Dimension Reduction | ||
|    |издатель = Springer, Berlin – Heidelberg – New York |    |издатель = Springer, Berlin – Heidelberg – New York | ||
| Строка 102: | Строка 102: | ||
| [[Категория:Машинное обучение (публикации)]] | [[Категория:Машинное обучение (публикации)]] | ||
| </noinclude> | </noinclude> | ||
| - | |||
Версия 14:18, 26 сентября 2009
Gorban, A.N., Kegl, B., Wunsch, D., Zinovyev, A.Y. Principal Manifolds for Data Visualisation and Dimension Reduction. —  Springer, Berlin – Heidelberg – New York, 2008. — ISBN 978-3-540-73749-0
| BibTeX: |  @book{NPCA2007,
   author = "Gorban, A.N. and Kegl, B. and Wunsch, D. and Zinovyev, A.Y.",
   title = "Principal Manifolds for Data Visualisation and Dimension Reduction",
   publisher = "Springer, Berlin – Heidelberg – New York",
   year = "2008",
   url = "http://pca.narod.ru/contentsgkwz.htm",
   isbn = "978-3-540-73749-0",
   language = english
 }
 | 
Аннотация
Первая в мировой научной литературе монография, посвященная методу главных многообразий (обобщения Кохоненовских SOM в том числе): Главные многообразия для визуализации и анализа данных, А. Горбань, Б. Кегль, Д. Вунш, А. Зиновьев (ред.), Шпрингер, 2007. Подготовлена международным коллективом авторов.
 
Contents
1 Developments and Applications of Nonlinear Principal Component Analysis – a Review
Uwe Kruger, Junping Zhang, Lei Xie
2 Nonlinear Principal Component Analysis: Neural Network Models and Applications 
Matthias Scholz, Martin Fraunholz, Joachim Selbig
3 Learning Nonlinear Principal Manifolds by Self-Organising Maps
Hujun Yin
4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization
Alexander N Gorban, Andrei Y Zinovyev
5 Topology-Preserving Mappings for Data Visualisation
Marian PeЇna, Wesam Barbakh, Colin Fyfe
6 The Iterative Extraction Approach to Clustering
Boris Mirkin
7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data
Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones
8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit
Stґephane Girard, Serge Iovleff
 
9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes
Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev
10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms
Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis
 
11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics
Steven B Damelin
12 Geometric Optimization Methods for the Analysis of Gene Expression Data
Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre
13 Dimensionality Reduction and Microarray data 
David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer
14 PCA and K-Means Decipher Genome
Alexander N Gorban, Andrei Y Zinovyev

