Вероятностное пространство
Материал из MachineLearning.
(дополнение) |
|||
Строка 22: | Строка 22: | ||
** Если <tex>\{B_i\}_{i=1}^\infty\subset\mathcal{F}</tex>, причем Если <tex>B_i\cap B_j=\emptyset</tex> для любых Если <tex>i\ne j</tex>, тогда должно быть <tex>P\left(\bigcup_{i=1}^\infty B_i\right)=\sum_{i=1}^\infty P(B_i)</tex> (свойство сигма-аддитивности). | ** Если <tex>\{B_i\}_{i=1}^\infty\subset\mathcal{F}</tex>, причем Если <tex>B_i\cap B_j=\emptyset</tex> для любых Если <tex>i\ne j</tex>, тогда должно быть <tex>P\left(\bigcup_{i=1}^\infty B_i\right)=\sum_{i=1}^\infty P(B_i)</tex> (свойство сигма-аддитивности). | ||
- | == | + | == Примеры наиболее часто использующихся вероятностных пространств == |
- | Если множество элементарных исходов <tex>\Omega</tex> конечно или счетно: <tex>\Omega=\{\omega_1,\omega_2,\ldots\}</tex>, то соответствующее вероятностное пространство называется ''дискретным''. В случае дискретных вероятностных пространств событиями обычно считают все возможные подмножества <tex>\Omega</tex>. В этом случае для задания вероятности необходимо и достаточно приписать каждому элементарному исходу <tex>\omega_i</tex> число <tex>p_i\ge 0</tex> так, чтобы их сумма была равна 1. Тогда вероятность любого события <tex>B</tex> | + | === Дискретные вероятностные пространства === |
+ | |||
+ | Если множество элементарных исходов <tex>\Omega</tex> конечно или счетно: <tex>\Omega=\{\omega_1,\omega_2,\ldots\}</tex>, то соответствующее вероятностное пространство называется ''дискретным''. В случае дискретных вероятностных пространств событиями обычно считают все возможные подмножества <tex>\Omega</tex>. В этом случае для задания вероятности необходимо и достаточно приписать каждому элементарному исходу <tex>\omega_i</tex> число <tex>p_i\ge 0</tex> так, чтобы их сумма была равна 1. Тогда вероятность любого события <tex>B</tex> задается следующим образом: | ||
<tex>P(B)=\sum_{i:\omega_i\in B}p_i.</tex> | <tex>P(B)=\sum_{i:\omega_i\in B}p_i.</tex> | ||
+ | |||
+ | === Вероятностные пространства на прямой <tex>\mathbb{R}</tex> === | ||
+ | |||
+ | Вероятностные пространства на прямой (<tex>\Omega=\mathbb{R}</tex>) естественным образом возникают при изучении [[случайная_величина|случайных величин]]. При этом в общем случае уже не получается рассматривать в качестве событий любые подмножества прямой, поскольку на таком широком классе обычно нельзя задать вероятностную меру, удовлетворяющую необходимым аксиомам. Универсальная сигма-алгебра событий, достаточная для работы - это сигма-алгебра борелевских множеств <tex>\mathcal{B}(\mathbb{R})</tex>: наименьшая сигма-алгебра, содержащая все открытые множества. Эквивалентное определение - наименьшая сигма-алгебра, содержащая все интервалы <tex>(a,b)</tex>. Универсальный способ задания вероятностной меры на данной сигма-алгебре - через [[функция_распределения|функцию распределения]] случайной величины. | ||
+ | |||
+ | === Вероятностные пространства в конечномерном пространстве <tex>\mathbb{R}^n</tex> === | ||
+ | |||
+ | Вероятностные пространства с множеством элементарных исходов <tex>\Omega=\mathbb{R}^n</tex> естественным образом возникают при изучении [[случайный_вектор|случайных векторов]]. Универсальной сигма-алгеброй событий при этом также является борелевская сигма-алгебра <tex>\mathcal{B}(\mathbb{R}^n)</tex>, порожденная всеми открытыми множествами. Принципиально этот случай мало чем отличается от случая одной прямой. | ||
+ | |||
+ | === Вероятностные пространства в пространстве <tex>\mathbb{R}^T</tex> для произвольного множества индексов <tex>T</tex>=== | ||
+ | |||
+ | При изучении [[случайный_процесс|случайных процессов]] возникают более сложные вероятностные пространства с множеством элементарных исходов <tex>\mathbb{R}^T</tex>, где индексы <tex>T</tex> часто интерпретируются как "время". Чаще всего рассматривают случаи <tex>T=\{0,1,2,\ldots\}</tex> (процессы с дискретным временем) или <tex>T=(a,b)</tex>, <tex>T=[0,\infty)</tex> (процессы с непрерывным временем). | ||
+ | |||
+ | |||
+ | == Литература == | ||
+ | 1. {{книга | ||
+ | |автор = Ширяев А.Н. | ||
+ | |заглавие = Вероятность | ||
+ | |год = 2004 | ||
+ | |место = М. | ||
+ | |издательство = МЦНМО | ||
+ | }} | ||
[[Категория:Материалы по теории вероятностей]] | [[Категория:Материалы по теории вероятностей]] |
Версия 21:36, 6 ноября 2009
Вероятностное пространство — это математическая модель случайного эксперимента (опыта) в аксиоматике А. Н. Колмогорова. Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, необходимую для его математического анализа средствами теории вероятностей. Любая задача теории вероятностей решается в рамках некоторого вероятностного пространства, полностью заданного изначально. Задачи, в которых вероятностное пространство задано не полностью, а недостающую информацию следует получить по результатам наблюдений, относятся к области математической статистики.
Содержание |
Определение
Вероятностное пространство — это тройка , где:
- — это множество объектов , называемых элементарными исходами эксперимента. На это множество не накладывается никаких условий, оно может быть совершенно произвольным. При задании вероятностной модели для конкретного случайного эксперимента множество необходимо определять таким образом, чтобы в любой реализации опыта происходил один и только один элементарный исход. Элементарный исход содержит в себе всю возможную информацию о результате случайного опыта. С формальной математической точки зрения «произвести случайный опыт» означает в точности указать один элементарный исход , который произошел в данной реализации опыта.
- — это некоторая зафиксированная система подмножеств , которые будут называться (случайными) событиями. Если элементарный исход, произошедший в результате реализации случайного опыта, входит в событие , то говорят, что в данной реализации событие произошло, иначе говорят, что событие не произошло. Совокупность событий должна быть сигма-алгеброй, то есть удовлетворять следующим свойствам:
- Пустое множество должно быть событием, то есть принадлежать . Это событие, которое существует в любом вероятностном пространстве, называется невозможным, поскольку оно никогда не происходит.
- Все множество также должно быть событием: . Это событие называется достоверным, так как происходит при любой реализации случайного опыта.
- Совокупность событий должна образовывать алгебру, то есть быть замкнутой относительно основных теоретико-множественных операций, выполняемых над конечным числом событий. Если и , тогда должно быть , , . Операции над событиями имеют очевидный содержательный смысл.
- В дополнение к указанным свойствам, система должна быть замкнута относительно операций над событиями, выполняемых в счетном числе (свойство сигма-алгебры). Если , тогда должно быть и .
- — это числовая функция, которая определена на и ставит в соответствие каждому событию число , которое называется вероятностью события . Эта функция должна быть конечной сигма-аддитивной мерой, равной 1 на всем пространстве, то есть обладать свойствами:
- для любого
- ,
- Если и — события, причем , тогда (свойство аддитивности).
- Если , причем Если для любых Если , тогда должно быть (свойство сигма-аддитивности).
Примеры наиболее часто использующихся вероятностных пространств
Дискретные вероятностные пространства
Если множество элементарных исходов конечно или счетно: , то соответствующее вероятностное пространство называется дискретным. В случае дискретных вероятностных пространств событиями обычно считают все возможные подмножества . В этом случае для задания вероятности необходимо и достаточно приписать каждому элементарному исходу число так, чтобы их сумма была равна 1. Тогда вероятность любого события задается следующим образом:
Вероятностные пространства на прямой
Вероятностные пространства на прямой () естественным образом возникают при изучении случайных величин. При этом в общем случае уже не получается рассматривать в качестве событий любые подмножества прямой, поскольку на таком широком классе обычно нельзя задать вероятностную меру, удовлетворяющую необходимым аксиомам. Универсальная сигма-алгебра событий, достаточная для работы - это сигма-алгебра борелевских множеств : наименьшая сигма-алгебра, содержащая все открытые множества. Эквивалентное определение - наименьшая сигма-алгебра, содержащая все интервалы . Универсальный способ задания вероятностной меры на данной сигма-алгебре - через функцию распределения случайной величины.
Вероятностные пространства в конечномерном пространстве
Вероятностные пространства с множеством элементарных исходов естественным образом возникают при изучении случайных векторов. Универсальной сигма-алгеброй событий при этом также является борелевская сигма-алгебра , порожденная всеми открытыми множествами. Принципиально этот случай мало чем отличается от случая одной прямой.
Вероятностные пространства в пространстве для произвольного множества индексов
При изучении случайных процессов возникают более сложные вероятностные пространства с множеством элементарных исходов , где индексы часто интерпретируются как "время". Чаще всего рассматривают случаи (процессы с дискретным временем) или , (процессы с непрерывным временем).
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.