Биномиальное распределение

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Нормальное приближение)
(дополнение)
Строка 2: Строка 2:
''Биномиальное распределение'' - дискретное распределение вероятностей [[случайная_величина|случайной величины]] <tex>X</tex>, принимающей целочисленные значения <tex>k=0,1,\ldots,n</tex> с вероятностями:
''Биномиальное распределение'' - дискретное распределение вероятностей [[случайная_величина|случайной величины]] <tex>X</tex>, принимающей целочисленные значения <tex>k=0,1,\ldots,n</tex> с вероятностями:
-
<tex>P(X=k)=C_n^kp^k(1-p)^{n-k}</tex>.
+
<center><tex>P(X=k)=C_n^kp^k(1-p)^{n-k}</tex>.</center>
Данное распределение характеризуется двумя параметрами: целым числом <tex>n>0</tex>, называемым ''числом испытаний'', и вещественным числом <tex>p</tex>, <tex>0\le p\le 1</tex>, называемом ''вероятностью успеха в одном испытании''. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из <tex>n</tex> независимых испытаний, в каждом из которых может произойти "успех" с вероятностью <tex>p</tex>, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы <tex>X=X_1+\cdots+X_n</tex> независимых слагаемых, имеющих [[распределение Бернулли]].
Данное распределение характеризуется двумя параметрами: целым числом <tex>n>0</tex>, называемым ''числом испытаний'', и вещественным числом <tex>p</tex>, <tex>0\le p\le 1</tex>, называемом ''вероятностью успеха в одном испытании''. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из <tex>n</tex> независимых испытаний, в каждом из которых может произойти "успех" с вероятностью <tex>p</tex>, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы <tex>X=X_1+\cdots+X_n</tex> независимых слагаемых, имеющих [[распределение Бернулли]].
Строка 25: Строка 25:
Строгая формулировка: если <tex>n\to\infty</tex> и <tex>p\to 0</tex> таким образом, что <tex>np\to\lambda</tex>, то
Строгая формулировка: если <tex>n\to\infty</tex> и <tex>p\to 0</tex> таким образом, что <tex>np\to\lambda</tex>, то
-
<tex>P(X=k)\to\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots.</tex>
+
<center><tex>P(X=k)\to\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots.</tex></center>
Более того, справедлива следующая оценка. Пусть <tex>Y</tex> - случайная величина, имеющая распределение Пуассона с параметром <tex>\lambda=np</tex>.
Более того, справедлива следующая оценка. Пусть <tex>Y</tex> - случайная величина, имеющая распределение Пуассона с параметром <tex>\lambda=np</tex>.
Тогда для произвольного множества <tex>B\subset\{0,1,2,\ldots\}</tex> справедливо неравенство:
Тогда для произвольного множества <tex>B\subset\{0,1,2,\ldots\}</tex> справедливо неравенство:
-
<tex>|P(X\in B) - P(Y\in B)|\le 2np^2.</tex>
+
<center><tex>|P(X\in B) - P(Y\in B)|\le 2np^2.</tex></center>
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Строка 37: Строка 37:
Приближение нормальным распределением используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
Приближение нормальным распределением используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
-
<tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex>
+
<center><tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex></center>
близко к стандартному нормальному.
близко к стандартному нормальному.
Строка 44: Строка 44:
Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям <tex>k</tex>, таким что <tex>|k-np|=o(npq)^{2/3}</tex>, имеет место
Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям <tex>k</tex>, таким что <tex>|k-np|=o(npq)^{2/3}</tex>, имеет место
-
<tex>P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right),</tex> где <tex>\varphi</tex> - плотность стандартного нормального распределения.
+
<center><tex>P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right),</tex></center>
 +
 
 +
где <tex>\varphi</tex> - плотность стандартного нормального распределения.
===Интегральная теорема Муавра-Лапласа===
===Интегральная теорема Муавра-Лапласа===
 +
На практике необходимость оценки вероятностей отдельных значений, которую дает локальная теорема Муавра-Лапласа, возникает не часто. Гораздо более важно оценивать вероятности событий, включающих в себя множество значений. Для этого используется интегральная теорема, которую можно сформулировать в следующем виде [1, гл. I, §6]:
 +
 +
<center><tex>\sup_{-\infty\le a<b\le\infty}\left|P\left(a<\frac{X-np}{\sqrt{npq}}\le b\right) - P(a<Z\le b)\right|\to 0</tex> при <tex>n\to\infty</tex>,</center>
 +
 +
где случайная величина <tex>Y</tex> имеет стандартное нормальное распределение <tex>\mathcal{N}(0,1)</tex>, и аппроксимирующая вероятность определяется по формуле
 +
 +
<center><tex>P(a<Z\le b)=\Phi(b)-\Phi(a)</tex></center>,
 +
 +
где <tex>\Phi(t)</tex> - функция распределения стандартного нормального закона: <tex>\Phi(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-t^2/2}\,dt</tex>.
 +
 +
Есть ряд результатов, позволяющих оценить скорость сходимости. В [1, гл. I, §6] приводится следующий результат, являющийся частным случаем теоремы Берри-Эссеена:
 +
==Литература==
==Литература==

Версия 12:09, 4 ноября 2009

Содержание

Определение

Биномиальное распределение - дискретное распределение вероятностей случайной величины X, принимающей целочисленные значения k=0,1,\ldots,n с вероятностями:

P(X=k)=C_n^kp^k(1-p)^{n-k}.

Данное распределение характеризуется двумя параметрами: целым числом n>0, называемым числом испытаний, и вещественным числом p, 0\le p\le 1, называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из n независимых испытаний, в каждом из которых может произойти "успех" с вероятностью p, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы X=X_1+\cdots+X_n независимых слагаемых, имеющих распределение Бернулли.

Основные свойства

Характеристическая функция \phi(t)=(1+p(e^{it}-1))^n

Моменты:

  • Математическое ожидание: MX=np
  • Дисперсия: DX=np(1-p)
  • Асимметрия: \gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}; при p=0.5 распределение симметрично относительно центра n/2

Асимптотические приближения при больших n

Если значения n велики, то непосредственное вычисление вероятностей событий, связанных с данной случайной величиной, технически затруднительно. В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).

Приближение Пуассона

Приближение распределением Пуассона применяется в ситуациях, когда значения n большие, а значения p близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром \lambda=np.

Строгая формулировка: если n\to\infty и p\to 0 таким образом, что np\to\lambda, то

P(X=k)\to\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots.

Более того, справедлива следующая оценка. Пусть Y - случайная величина, имеющая распределение Пуассона с параметром \lambda=np. Тогда для произвольного множества B\subset\{0,1,2,\ldots\} справедливо неравенство:

|P(X\in B) - P(Y\in B)|\le 2np^2.

Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].

Нормальное приближение

Приближение нормальным распределением используется в ситуациях, когда n\to\infty, а p фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении X в виде суммы n слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины

X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}, где q=1-p

близко к стандартному нормальному.

Локальная теорема Муавра-Лапласа

Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям k, таким что |k-np|=o(npq)^{2/3}, имеет место

P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right),

где \varphi - плотность стандартного нормального распределения.

Интегральная теорема Муавра-Лапласа

На практике необходимость оценки вероятностей отдельных значений, которую дает локальная теорема Муавра-Лапласа, возникает не часто. Гораздо более важно оценивать вероятности событий, включающих в себя множество значений. Для этого используется интегральная теорема, которую можно сформулировать в следующем виде [1, гл. I, §6]:

\sup_{-\infty\le a<b\le\infty}\left|P\left(a<\frac{X-np}{\sqrt{npq}}\le b\right) - P(a<Z\le b)\right|\to 0 при n\to\infty,

где случайная величина Y имеет стандартное нормальное распределение \mathcal{N}(0,1), и аппроксимирующая вероятность определяется по формуле

P(a<Z\le b)=\Phi(b)-\Phi(a)
,

где \Phi(t) - функция распределения стандартного нормального закона: \Phi(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-t^2/2}\,dt.

Есть ряд результатов, позволяющих оценить скорость сходимости. В [1, гл. I, §6] приводится следующий результат, являющийся частным случаем теоремы Берри-Эссеена:


Литература

1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.


Ссылки

Личные инструменты