Распределение хи-квадрат

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: {{Вероятностное распределение| name =Распределение хи-квадрат| type =Плотность| pdf_image =[[Файл:chi-squa...)
(категория)
Строка 57: Строка 57:
: <tex>F = \frac{Y_1/n_1}{Y_2 / n_2}</tex>
: <tex>F = \frac{Y_1/n_1}{Y_2 / n_2}</tex>
имеет [[распределение Фишера]] со степенями свободы <tex>\!(n_1,n_2)</tex>.
имеет [[распределение Фишера]] со степенями свободы <tex>\!(n_1,n_2)</tex>.
 +
 +
[[Категория:Вероятностные распределения]]

Версия 15:06, 19 ноября 2009

Распределение хи-квадрат
Плотность вероятности
325px
k - число степеней свободы
Функция распределения
325px
k - число степеней свободы
Параметры n > 0\, число степеней свободы
Носитель x \in [0; +\infty)\,
Плотность вероятности \frac{(1/2)^{n/2}}{\Gamma(n/2)} x^{n/2 - 1} e^{-x/2}\,
Функция распределения \frac{\gamma(n/2,x/2)}{\Gamma(n/2)}\,
Математическое ожидание n\,
Медиана примерно n-2/3\,
Мода n-2\, если n\geq 2\,
Дисперсия 2\,n\,
Коэффициент асимметрии \sqrt{8/n}\,
Коэффициент эксцесса 12/n\,
Информационная энтропия \frac{n}{2}\!+\!\ln\left[2\Gamma\left({n \over 2}\right)\right]\!+\!\left(1\!-\!\frac{n}{2}\right)\psi\left(\frac{n}{2}\right)

\!\psi(x) = \Gamma'(x) / \Gamma(x).

Производящая функция моментов (1-2\,t)^{-n/2}, если 2\,t<1\,
Характеристическая функция (1-2\,i\,t)^{-n/2}\,


Распределение \!\chi^2 (хи-квадрат) с n степенями свободы — это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Определение

Пусть X_1, \ldots, X_n — совместно независимые стандартные нормальные случайные величины, то есть: X_i \sim N(0,1). Тогда случайная величина

Y = X_1^2 + \cdots + X_n^2

имеет распределение хи-квадрат с n степенями свободы, обозначаемое \!\chi^2(n).

Замечание. Распределение хи-квадрат является частным случаем Гамма распределения:

\chi^2(n) \equiv \Gamma\left({n \over 2}, {2}\right).

Следовательно, плотность распределения хи-квадрат имеет вид

f_{\chi^2(n)}(x) = \frac{(1/2)^{n \over 2}}{\Gamma\left({n \over 2}\right)}\, x^{{n \over 2} - 1}\, e^{-\frac{x}{2}},

а его функция распределения

F_{\chi^2(n)}(x) = \frac{\gamma\left({n \over 2}, {x \over 2}\right)}{\Gamma\left({n \over 2}\right)},

где \!\Gamma и \!\gamma обозначают соответственно полную и неполную гамма-функции.

Свойства распределения хи-квадрат

  • Распределение хи-квадрат устойчиво относительно суммирования. Если \!Y_1, Y_2 независимы, и \!Y_1 \sim \chi^2(n_1), а \!Y_2 \sim \chi^2(n_2), то
Y_1 + Y_2 \sim \chi^2(n_1 + n_2).
  • Из определения легко получить моменты распределения хи-квадрат. Если Y \sim \chi^2(n), то
\mathbb{E}[Y] = n,
\!\mathrm{D}[Y] = 2n.
\frac{Y-n}{\sqrt{2n}} \to N(0,1) по распределению при n \to \infty.

Связь с другими распределениями

  • Если X_1 ,\ldots , X_n независимые нормальные случайные величины, то есть: X_i \sim N(\mu,\sigma^2),\; i=1,\ldots, n, то случайная величина
Y = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2

имеет распределение хи-квадрат.

 \chi^2(2) \equiv \mathrm{Exp}(1/2).
  • Если Y_1 \sim \chi^2(n_1) и Y_2 \sim \chi^2(n_2), то случайная величина
F = \frac{Y_1/n_1}{Y_2 / n_2}

имеет распределение Фишера со степенями свободы \!(n_1,n_2).

Личные инструменты