Тренд
Материал из MachineLearning.
(уточнение, викификация) |
(→См. также) |
||
Строка 47: | Строка 47: | ||
* [[Критерий Фостера-Стюарта]] | * [[Критерий Фостера-Стюарта]] | ||
- | == | + | == Методы прогнозирования тренда временного ряда == |
* [[Модель Брауна]] | * [[Модель Брауна]] | ||
* [[Модель Хольта]] | * [[Модель Хольта]] |
Текущая версия
|
Тренд — тенденция изменения показателей временного ряда. Тренды могут быть описаны различными функциями — линейными, степенными, экспоненциальными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе статистической проверки гипотезы о постоянстве параметров графика.
Методы оценки
- Параметрические — рассматривают временной ряд как гладкую функцию от : ; затем различными методами оцениваются параметры функции , например, методом наименьших квадратов. Выделяют линеаризуемые тренды, то есть приводимые к линейному виду относительно параметров тренда на основе тех или иных алгебраических преобразований.
- Непараметрические — это разного рода скользящие средние (простая, взвешенная); метод применяется для оценки тренда, но не для прогнозирования; полезен в случае, когда для оценки тренда не удается подобрать подходящую функцию.
Предпололжим что основной процесс — неполностью изученная физическая система. Можно построить модель независимо от природы процесса, чтобы объяснить поведение показателей. В частности, можно узнать, возрастает или убывает тенденция показателей.
Моделирование трендов
Для описания временных рядов используются математические модели. Временной ряд , генерируемый некоторой моделью, можно представить в виде двух компонент:
где величина — шум, генерируется случайным неавтокоррелированным процессом с нулевым математическим ожиданием и конечной (не обязательно постоянной) дисперсией, а величина может быть cгенерирована либо детерминированной функцией, либо случайным процессом, либо их комбинацией. Величины и различаются характером воздействия на значения последующих членов ряда:
- переменная влияет только на значение синхронного ей члена ряда;
- в известной степени определяет значение нескольких или всех последующих членов ряда.
Через величину осуществляется взаимодействие членов ряда; таким образом, в ней содержится информация, необходимая для получения прогнозов. Величина называется уровнем ряда в момент , а закон эволюции уровня во времени — трендом. Тренд может быть выражен как детерминированной, так и случайной функциями, либо их комбинацией. Стохастические тренды имеют, например, ряды со случайным уровнем или случайным скачкообразным характером роста.
Компоненты временного ряда и ненаблюдаемы. Они являются теоретическими величинами. Их выделение и составляет предмет анализа временного ряда в задаче прогнозирования. Оценку будущих членов ряда обычно делают по прогнозной модели. Прогнозная модель — это модель, аппроксимирующая тренд. Прогнозы — это оценки будущих уровней ряда, а последовательность прогнозов для различных периодов упреждения составляет оценку тренда.
При построении прогнозной модели выдвигается гипотеза о динамике величины , т.е. о характере тренда. Однако в связи с тем, что уверенность в гипотезе всегда относительна, рассматриваемые модели наделяются адаптивными свойствами, способностью к корректировке исходной гипотезы или даже к замене ее другой, более адекватно (с точки зрения точности прогнозов) отражающей поведение реального ряда.
Пример детерминированного тренда:
Пример случайного тренда:
где — некоторое начальное значение; — случайная переменная.
Пример тренда смешанного типа:
где — постоянные коэффициенты, — случайная переменная.
Статистические тесты
Методы прогнозирования тренда временного ряда
Ссылки
[1] Wikipedia
Литература
- Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов - М. Финансы и статистика, 2003